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Setting

Many low-power distributed sensors

Can only communicate locally
Sensor readings are noisy

Single central agent

Can make costly queries of any sensor
Goal is to detect a spacial boundary

Example: Sensing chemical concentrations

Our Approach
Denoising

Sensors play consensus game
Payoff: correlation with neighbors
Best response: update to neighbor majority
Synchronous or asynchronous updates

→

Active Learning

Actively select intelligent sensor queries
AL provably only effective in low noise
Use noise-tolerant margin-based active learn-
ing algorithm
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Contributions
Theory

Positive results for denoising effectiveness,
including synchronous and random updates
Arbitrary asynchronous updates can fail

Experiments

Denoising is very effective
Denoising improves performance of AL

Notation and Setup
N sensors with communication radius r
Noisy sensor reading with probability η
Sensors uniformly dist. in unit sphere in Rd

Boundary is homogeneous linear separator

Synchronous Updates
Theorem 1. If

N ≥ 2
(r/2)d(1/2−η)2 ln

(
2

(r/2)d(1/2−η)2δ

)
then, w.p.≥ 1−δ, after one update every sensor
at a distance ≥ r from the separator is correct.

Proof sketch:

Consider a sensor x far from separator
E[nbrs] = N · µ(Br(x)) ≥ 1

(1/2−η)2 ln(N/δ)

E[bad nbrs] is η fraction
Apply Bernstein and union bound

Random Order Asynchronous

Theorem 2. If r ≤ O( 1/2−η√
d

) and

N ≥ 1
(r/2)d(1/2−η)2 ln

(
1

rd(1/2−η)2δ

)
then, w.p. ≥ 1 − δ, all sensors at distance ≥ 2r
from the separator will update correctly.

Proof sketch:

Partition sensors based on distance from sep.
Inside sensors have no guarantee
Mid-distance sensors rarely mistaken
Outside sensors never update incorrectly
Apply Hoeffding bounds and Theorem 1

Arbitrary Order Asynchronous

Theorem 3. For some c, if φ = min(η, 12 − η),

N ≥ 16
(cr)dφ2

(
ln 8

(cr)dφ2 + ln 1
δ

)
,

and r ≤ 1/2 then, w.p. ≥ 1 − δ, there exists
an ordering so that asynchronous updates in this
order cause all points to have the same label.

Proof sketch:

Wave of updates from left to right
First half correctly turns negative (Thm. 1)
Second half incorrectly turns negative

Denoising Results
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Random Noise
Pockets of Noise

Comparison of initial vs. final noise rates
N = 10, 000 and r = 0.1

Synchronous (shown) and asynchronous per-
form comparably

Active Learning Results
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Pre Denoising - Our Method
Pre Denoising - SVM
Post Denoising - Our Method
Post Denoising - SVM

Compared against passive SVM
N = 10, 000, r = 0.1, and η = 0.35

Active outperforms passive after denoising

Discussion
We seek specific ε-equilibrium configuration
instead of complete consensus equilibrium

Conservative best response: only update if
confident on correct side of separator

Combining denoising and kernelized AL al-
gorithm can help detect nonlinear boundaries

Future Directions
Guarantees for different boundary shapes
Changing environments (moving boundary)
Non-uniform sensor distributions
Alternative denoising dynamics


