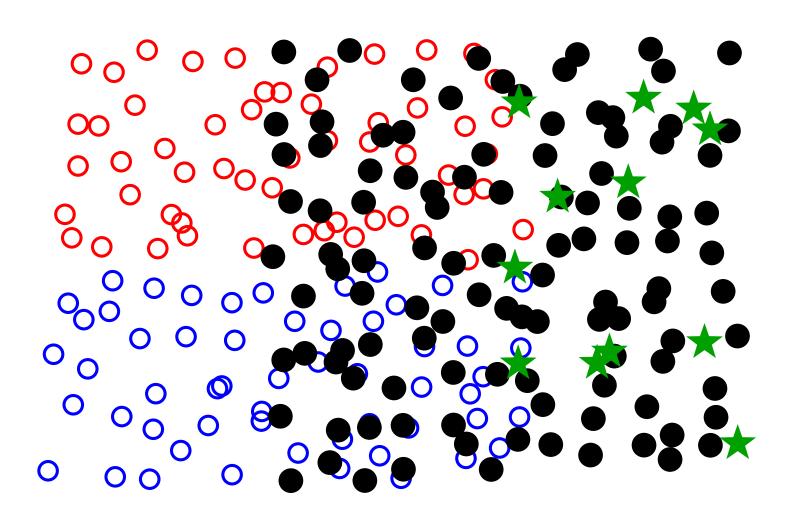
Active Nearest Neighbors in Changing Environments

Setting

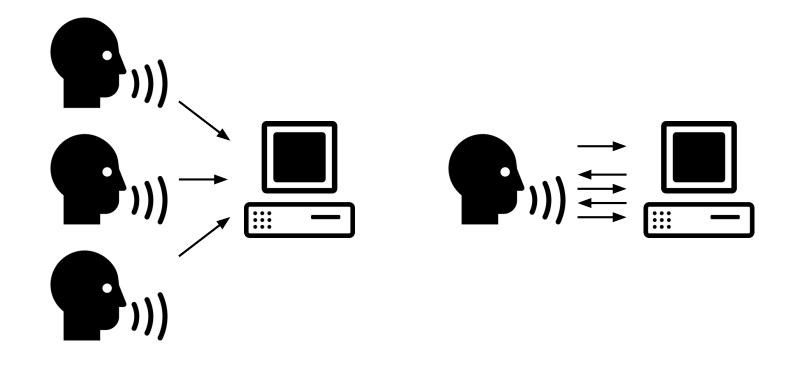
Active Domain Adaptation

- Labeled examples from source distribution
- Unlabeled examples from target distribution
- Active label query ability (target)
- Covariate shift (same labeling function)



Example: Speech recognition software

- Before releasing, train on in-house data set
- Once deployed, needs to learn individual user
- User feedback provides labels for user



Notation and Definitions

- $\eta(x) := \mathbb{P}(Y = 1|x)$ is λ -Lipschitz
- S, T sampled from distributions D_S, D_T
- $\mathcal{X}_S, \mathcal{X}_T \subseteq \mathcal{X}$ are the distribution supports
- $N_{\epsilon}(\mathcal{X})$ denotes the ϵ -covering number of \mathcal{X}
- $\mathcal{L}_T(h^*)$ is the Bayes error rate of target
- $\beta(A) := D_S(A)/D_T(A)$ is the weight ratio
- $B_{n,A}(x)$ denotes the *n*-NN ball of x w.r.t. A
- \mathcal{B} is the class of balls in \mathcal{X}

Chris Berlind Georgia Tech

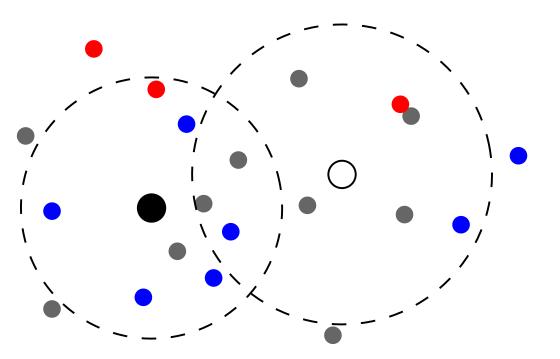
Our Approach

Active adaptive nearest neighbors

- Standard *k*-nearest-neighbor classification
- Adaptive nearest neighbor query strategy

Key Structure: (k, k')-NN-cover for T

- Definition: every example in T is either in the cover R or has k neighbors in R among the k'nearest neighbors in $T \cup R$
- Meaning: every target example is either labeled or has many labeled examples nearby



Algorithm

ANDA: <u>Active NN for Domain Adaptation</u>

- Input: labeled S, unlabeled T, params k, k'
- Find $Q \subseteq T$: $S \cup Q$ is (k, k')-NN-cover of T
- Query labels of the examples in Q
- Output: k-NN classifier on $S \cup Q$

Algorithm Variants

ANDA-Safe

- For each target example, query label if k'-NN ball has fewer than k labels
- Safe queries: *only* points not covered by source

ANDA-Safe-EMMA

- Efficient Multiset Multicover Approximation
- Finds approximate minimum (k, k')-NN-cover
- Potentially makes many fewer queries
- Retains query safety guarantee

Error Bound

Proof sketch:

Query Bound

Proof sketch:

Ruth Urner Max Planck Institute

Theorem 1. For all ϵ , if η is λ -Lipschiptz, the expected target error of ANDA(S, T, k, k') is

 $\leq (1 + \sqrt{8/k})\mathcal{L}_T(h^*) + 9\lambda\epsilon + \frac{2N_\epsilon(\mathcal{X}_T)k'}{|T|}.$

• Consider target test point $x \sim D_T$ • k'-th nearest neighbor is not too far away • (k, k')-NN-cover: k-th nearest label not far • η cannot change much over short distance • k nearest labels provide good approx. at x

Theorem 2. If $|S| \geq \tilde{\Omega}(\frac{\operatorname{vc}(\mathcal{B})\ln(1/\delta)|T|}{C k w})$ and $|S| \geq \frac{9|T|}{Cw}$ with $k \geq \Omega(\operatorname{VC}(\mathcal{B})\ln(|T|/\delta))$ and |T| > k' = (C+1)k, then, w.p. $\geq 1 - \delta$,

> ANDA-Safe-* *will not query any* $x \in T$ with $\beta(B_{Ck,T}(x)) > w$.

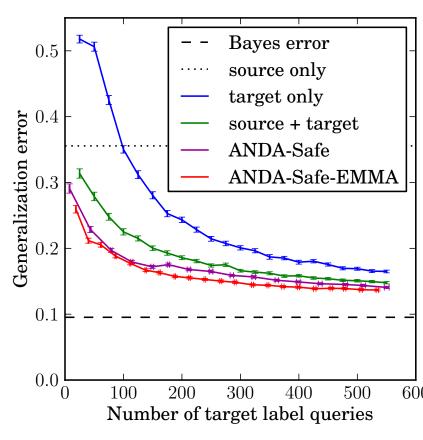
• Relative VC bounds: relate empirical weights to true probability weights of balls in \mathcal{X}

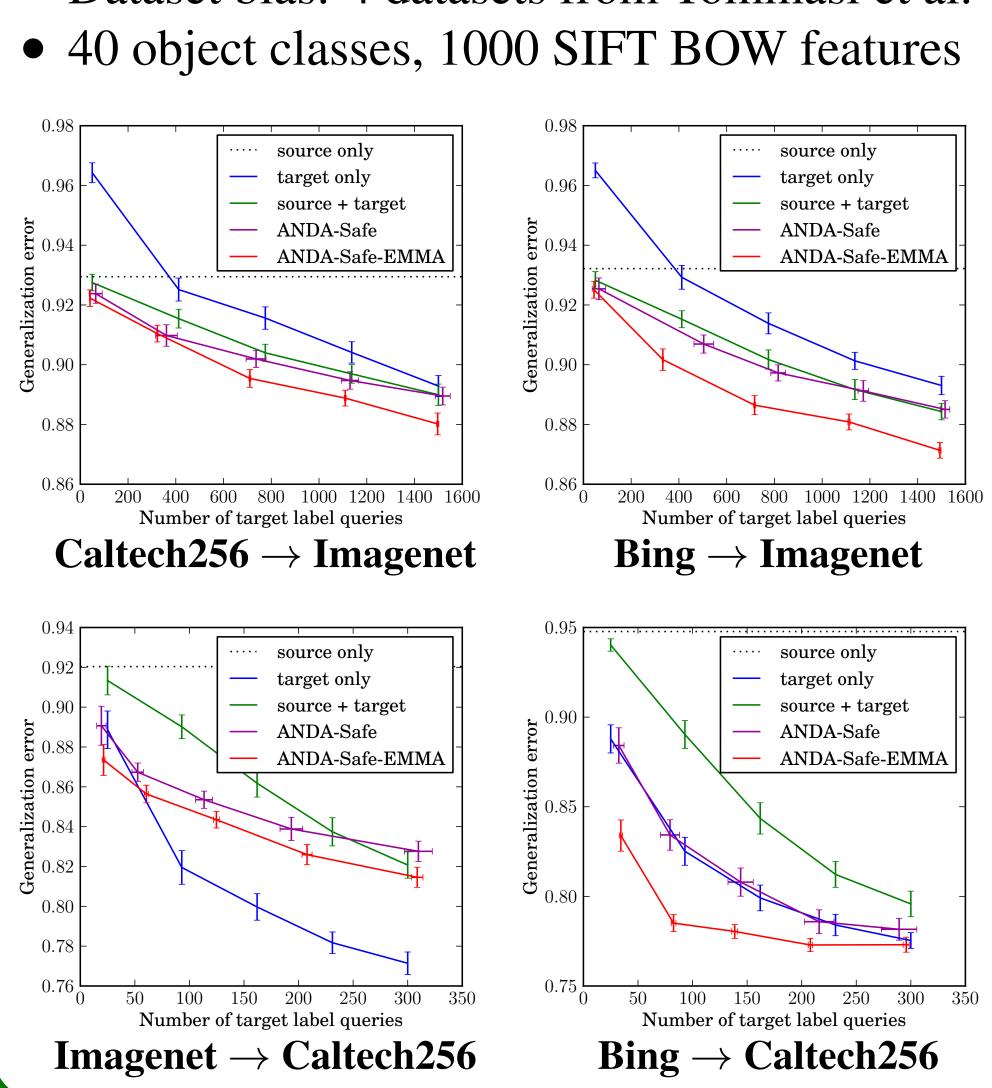
• Weight ratio: Source has significant weight in Ck-NN-ball $B_{Ck,T}(x)$ around target point x• Source hits $B_{Ck,T}(x)$ at least k times

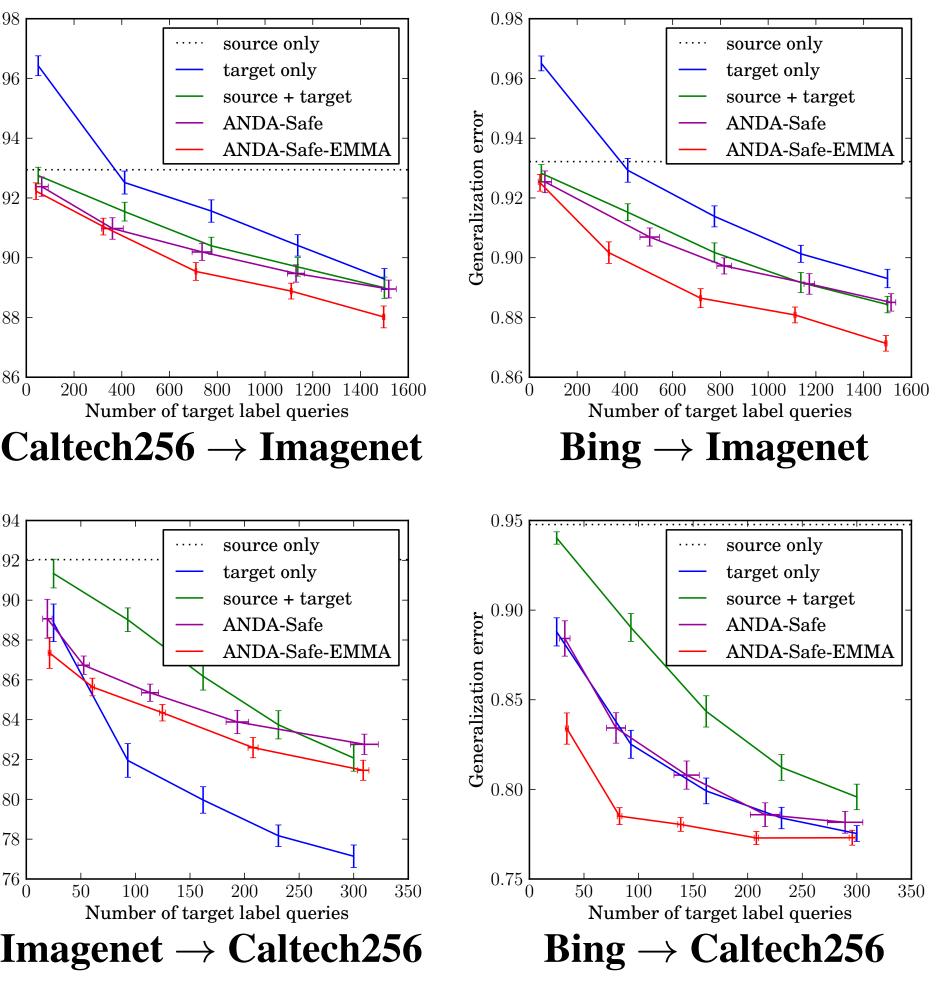
Discussion

• First formal demonstration of benefits from active learning for domain adaptation • First algorithm with finite sample bounds when target is not fully supported by source • Query complexity automatically adjusts to similarity between source and target • Both error and query consistency

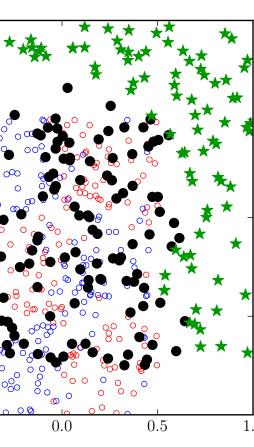
MAX-PLANCK-GESELLSCHAF'





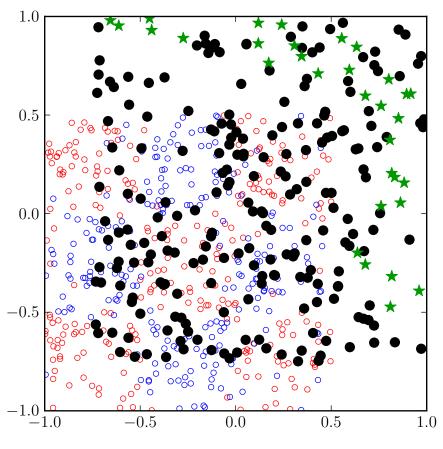


Synthetic Data



ANDA-Safe

• Negative source example • Positive source example



ANDA-Safe-EMMA

• Unlabeled target example \star Active label query

- |S| = 3200
- |T| varies
- k = 7
- k' = 21
- 100 trials

Image Classification

• Dataset bias: 4 datasets from Tommasi et al.