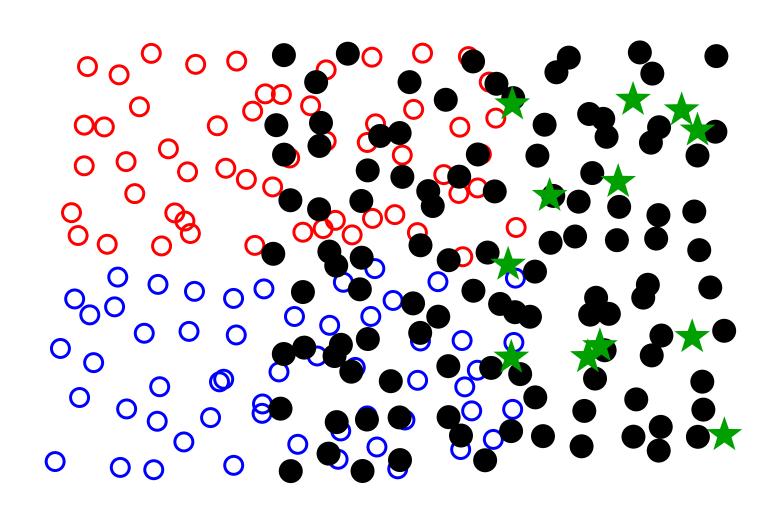
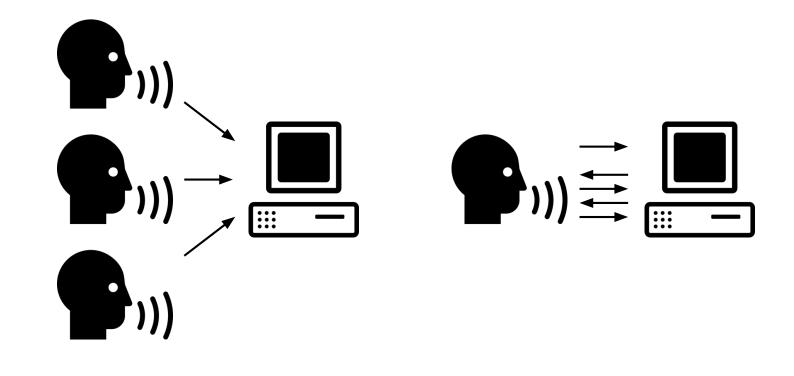
Active Nearest Neighbors in Changing Environments

Chris Berlind
Georgia Institute of
Technology


Ruth Urner Carnegie Mellon University

Carnegie Mellon University

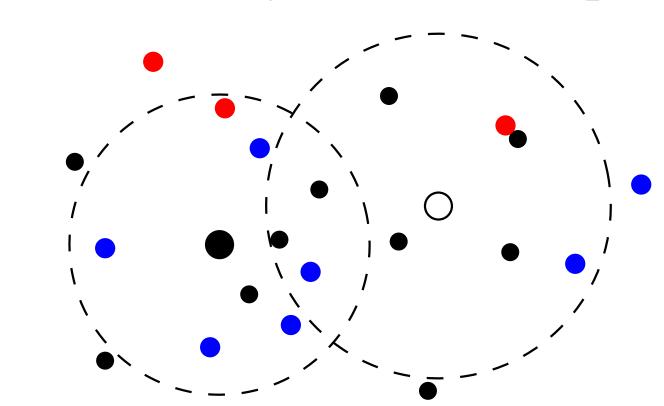
Setting


Active Domain Adaptation

- Labeled examples from source distribution
- Unlabeled examples from target distribution
- Active label query ability (target)
- Covariate shift (same labeling function)

Example: Speech recognition software

- Before releasing, train on in-house data set
- Once deployed, needs to learn individual user
- User feedback provides labels for user


Our Approach

Active adaptive nearest neighbors

- Standard k-nearest-neighbor classification
- Adaptive nearest neighbor query strategy

Key Structure: (k, k')-NN-cover for T

- Definition: every example in T is either in the cover R or has k neighbors in R among the k' nearest neighbors in $T \cup R$
- Meaning: every target example is either labeled or has many labeled examples nearby

Notation and Definitions

- $\eta(x) := \mathbb{P}(Y = 1|x)$ is λ -Lipschitz
- S, T sampled from distributions D_S, D_T
- $\mathcal{X}_S, \mathcal{X}_T \subseteq \mathcal{X}$ are the distribution supports
- $N_{\epsilon}(\mathcal{X})$ denotes the ϵ -covering number of \mathcal{X}
- $\mathcal{L}_T(h^*)$ is the Bayes error rate of target
- $\beta(A) := D_S(A)/D_T(A)$ is the weight ratio
- $B_{n,A}(x)$ denotes the n-NN ball of x w.r.t. A

Algorithm

ANDA: Active NN for Domain Adaptation

- Input: labeled S, unlabeled T, params k, k'
- Find $Q \subseteq T$: $S \cup Q$ is (k, k')-NN-cover of T
- Query labels of the examples in Q
- Output: k-NN classifier on $S \cup Q$

Algorithm Variants

ANDA-Safe

- Queries all target points not covered by source
- Query safety guarantee: queries *only* points not covered by source

ANDA-Safe-EMMA

- Efficient Multiset Multicover Approximation
- Queries aggressively via greedy approx. algo
- Retains query safety guarantee

Error Bound

Theorem 1. For all ϵ , if η is λ -Lipschiptz, the expected target error of ANDA(S,T,k,k') is at most

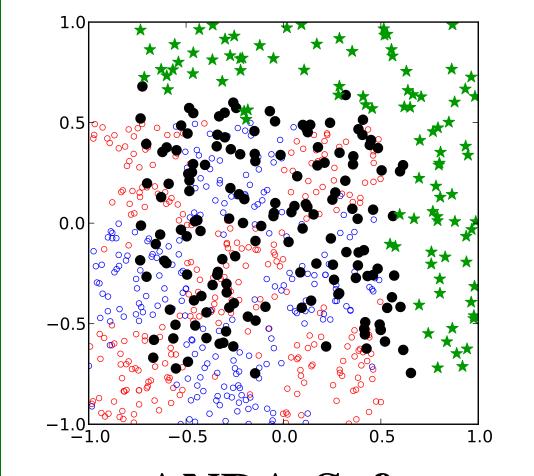
$$(1+\sqrt{8/k})\mathcal{L}_T(h^*)+9\lambda\epsilon+\frac{2N_{\epsilon}(\mathcal{X}_T)k'}{|T|}.$$

Proof sketch:

- Modification of standard techniques for NN
- Consider target test point $x \sim D_T$
- k'-th nearest neighbor is not too far away
- (k, k')-NN-cover: k-th nearest label not far
- η cannot change much over short distance
- k nearest labels provide good approx. at x

Query Bound

Theorem 2. Let $\delta > 0$, w > 0, C > 1, \mathcal{B} the class of balls in \mathcal{X} . If $|S| \geq \tilde{\Omega}(\frac{\operatorname{vc}(\mathcal{B})\ln(1/\delta)|T|}{C k w})$ and $|S| \geq \frac{9|T|}{C w}$ with $k \geq \Omega(\operatorname{vc}(\mathcal{B})\ln(|T|/\delta))$ and |T| > k' = (C+1)k, then, $w.p. \geq 1 - \delta$,

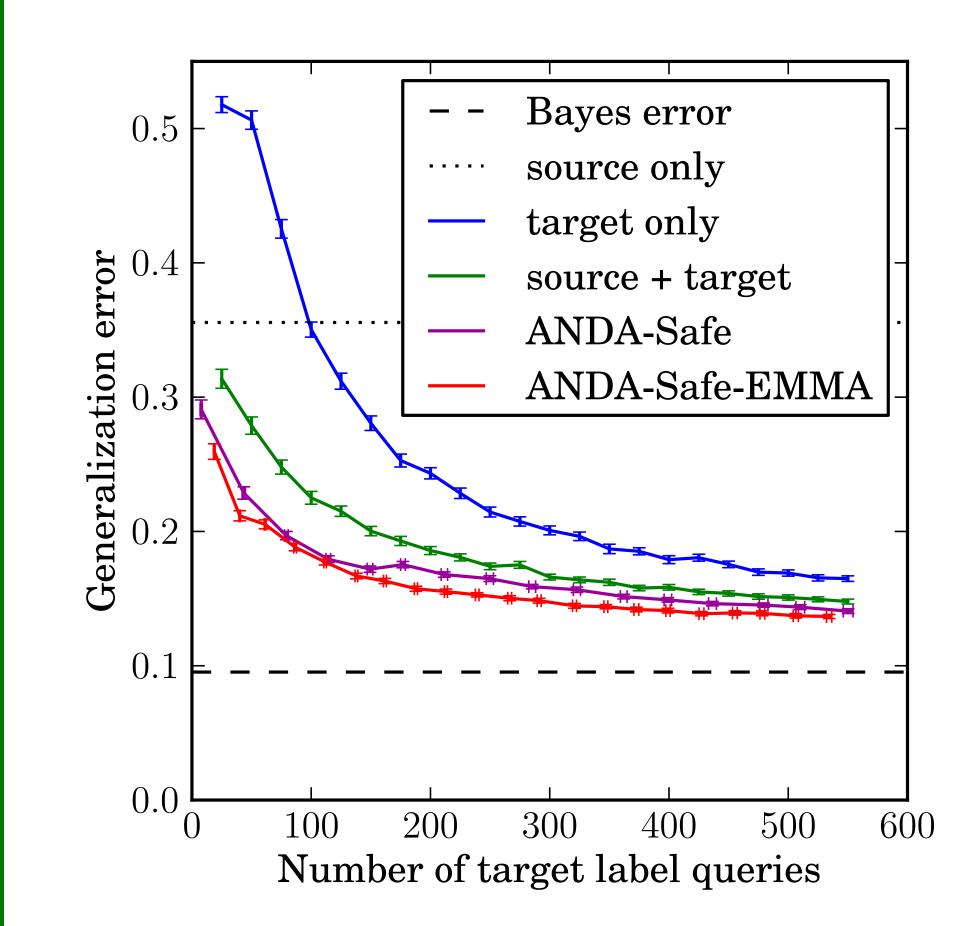

ANDA-Safe-* will not query any $x \in T$ with $\beta(B_{Ck,T}(x)) > w$.

Proof sketch:

- ullet Relative VC bounds: relate empirical weights to true probability weights of balls in ${\mathcal X}$
- Weight ratio: Source has significant weight in Ck-NN-ball $B_{Ck,T}(x)$ around target point x
- Source hits $B_{Ck,T}(x)$ at least k times
- ANDA-Safe-* will not query label of x

Experiments

Illustration



ANDA-Safe

ANDA-Safe-EMMA

- Negative source example
- Positive source example
- Unlabeled target example
- ★ Active label query

Comparison

- Sample sizes: |S| = 3200, |T| varies
- Parameters: k = 7, k' = 21
- Averaged over 100 independent trials

Discussion

- First formal demonstration of benefits from active learning for domain adaptation
- First algorithm with finite sample bounds when target is not fully supported by source
- Query complexity automatically adjusts to similarity between source and target
- Both error and query consistency
- Experiments illustrate target label savings and query adaptivity

Future Directions

- Lower bounds to show necessity of queries
- Generalize to regression
- Experiments on real data
- Handle shifts in labeling function
- Active DA strategies for other learners