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Abstract

While classic machine learning paradigms assume training and test data are gen-
erated from the same process, domain adaptation addresses the more realistic set-
ting in which the learner has large quantities of labeled data from a source task but
limited or no labeled data from a separate target task it is attempting to learn. In
this work, we demonstrate that being active adaptive yields a way to address the
statistical challenges inherent in this setting. We propose a new, non-parametric
algorithm, ANDA, that combines an active nearest neighbor querying strategy
with nearest neighbor prediction. We provide both an analysis of finite sample
convergence rates of the resulting k-nearest neighbor classifier and an analysis of
its querying behavior. In addition, we provide experiments on synthetic data to
illustrate the adaptivity and query efficiency of our algorithm.

1 Introduction

In a common model for domain adaptation, the learner receives large amounts of labeled data from a
(or several) source distribution and unlabeled data from the actual target distribution (and possibly a
small amount of labeled data from the target task as well). The goal of the learner is to output a good
model for the target task. For example, an e-commerce company may want to predict the success
of a product in one country when they only have preference data on that product from consumers in
a different country. To design methods for this scenario that are statistically consistent with respect
to the target task is challenging. This difficulty even occurs in the so-called covariate shift setting,
where the change in the environments is restricted to the marginal over the covariates, while the
regression functions (the labeling rules) of the involved distributions are identical.

In this work, we demonstrate that being active adaptive yields a way to address these challenges. We
propose a new, non-parametric algorithm for domain adaptation, ANDA, that combines an active
nearest neighbor querying strategy with nearest neighbor prediction. ANDA receives a labeled
sample (generated by some source distribution) and an unlabeled sample from the target task and
selects a subset of the target data to be labeled. It chooses points from the target to query for labels
according to how many source examples lie in a k′-nearest neighbor ball around them (this serves
as an indication for how well the area of a point is supported by the source). ANDA then predicts
with a k-nearest neighbor classifier on the combined source and target labeled data.

We prove that our algorithm enjoys strong performance guarantees. We provide both an analysis of
finite sample convergence rates of the resulting k-nearest neighbor classifier and an analysis of its
querying behavior. Remarkably, the predictive quality of the output classifier of ANDA does not
depend on the relatedness of source and target. ANDA will never suffer a negative transfer. This
is in sharp contrast to what we know from non-active domain adaptation methods, that are prone to
perform poorly if the source is very different from the target. This robustness is achieved by ANDA
adapting its querying behavior to the relatedness of source and target. ANDA will automatically
make more or less queries to the target sample depending on how well the target is supported by the
source, that is depending on whether the source provides sufficiently informative examples or not.

In a bit more detail, our main results are summarized as follows:

1



Bounding the loss. Theorem 1 provides a finite sample bound on the the expected 0-1 loss of
the classifier output by ANDA. This bound depends on the size of the unlabeled target sample
and on the Lipschitz constant of the underlying regression function. It does not depend on the size
or the generating process of the labeled source sample. In particular, it does not depend on any
relatedness measure between the source and target data generating distributions. We also show that,
even dropping the Lipschitz condition, ANDA is still consistent with respect to the target task.

Bounding the number of queries. In Theorem 2 we show that, with high probability, ANDA will
not query any points that are sufficiently supported by the source data. This implies in particular that,
if source and target happen to be identical (or very similar), ANDA will not make any queries at
all. Together with the error consistency result, this implies that we get the desired behavior of our
active adaptive scheme: The loss of the output classifier always converges to the Bayes optimal
while queries are made only in regions where the source is not providing information, that is, where
acquiring labels from the target is needed.

Approximation guarantee for (k, k′)-NN-cover subproblem. In order to select the subset of
target points to be queried, we define a combinatorial optimization problem, the (k, k′)-NN-cover
problem (Definition 2), that may be of independent interest. We show that it is a special case of
the MINIMUM MULTISET MULTICOVER problem. We employ a greedy strategy to find a small
(k, k′)-NN-cover and argue that this greedy strategy enjoys a O(logm)-approximation guarantee
on combined source/target samples of m points.

In addition to the theoretical guarantees, we provide experiments on synthetic data to illustrate the
adaptivity and query efficiency of our algorithm.

The idea of incorporating active learning (selective querying strategies) in to the design of algorithms
for domain adaptation has recently received some attention in the more application-focused machine
learning research community [1, 2, 3]. However, to the best of our knowledge, there has not been
any formal analysis of the possibilities of incorporating active learning to facilitate being adaptive to
distribution changes. We view our work as a first step in this direction. Please refer to Appendix A
for a more comprehensive discussion of related work.

1.1 Notation

Let (X , ρ) be a separable metric space. We let Br(x) denote the closed ball of radius r around x.
We let Nε(X , ρ) denote the ε-cover-number of the metric space. That is, the minimum number of
subsets C ⊆ X of diameter at most ε that cover the space X .

We consider a binary classification task, where PS and PT denote source and target distributions
over X × {0, 1}. We let DS and DT denote the source and target marginal distributions over X ,
respectively. Further, we let XS and XT denote the support of DS and DT respectively. That is,
for I ∈ {S, T}, we have XI := {x ∈ X : DI(Br(x)) > 0 for all r > 0}. We consider the
covariate shift setting. That is, the regression function η(x) = P[y = 1|x] is the same for both
source and target. We use the notation S and T for i.i.d. samples from PS and DT , respectively, and
let |S| = mS , |T | = mT , and m = mS +mT .

For any finite A ⊆ X and x ∈ X , the notation x1(x,A), . . . , x|A|(x,A) gives an ordering of the
elements ofA such that ρ(x1(x,A), x) ≤ ρ(x2(x,A), x) ≤ · · · ≤ ρ(x|A|(x,A), x). IfA is a labeled
sequence of domain points, A = ((x1, y1), (x2, y2), . . . , (xm, ym)), then we use the same notation
for the labels (that is yi(x,A) denotes the label of the i-th nearest point to x in A). We use the
notation k(x,A) = {x1(x,A), . . . , xk(x,A)} to denote the set of the k nearest neighbors of x in A.

We are interested in bounding the target loss of a k-nearest neighbor classifier. For a sequence A of
labeled points A = ((x1, y1), (x2, y2), . . . , (xm, ym)) we let hkA denote the k-NN classifier on A:

hkA(x) := 1
[
1/kΣki=1yi(x,A) ≥ 1/2

]
,

where 1[·] denotes the indicator function. We denote the Bayes classifier by h∗(x) = 1[η(x) ≥ 1/2]
and the target loss of a classifier h : X → {0, 1} by LT (h) = P(x,y)∼PT [y 6= h(x)]. For a subset
A ⊆ X of the domain that is measurable both with respect to DS and DT and satisfies DT (A) > 0,
we define the weight ratio of A as β(A) := DS(A)/DT (A). For a collection of subsets B ⊆ 2X

(for example all balls in (X , ρ)), we let VCdim(B) denote its VC-dimension.
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Algorithm 1 ANDA: Active Nearest Neighbor Domain Adaptation
input Labeled sample S, unlabeled sample T , parameters k, k′
Find T l ⊆ T such that S ∪ T l is a (k, k′)-NN-cover of T
Query the labels of points in T l
return hkS∪T l , the k-NN classifier on S ∪ T l

Algorithm 2 Safe: Find (k, k′)-NN-cover
input Labeled sample S, unlabeled sample T , parameters k, k′
return {x ∈ T : |k′(x, S ∪ T ) ∩ S| < k}

2 The algorithm

In brief, our algorithm receives a labeled sample S (from the source distribution), an unlabeled
sample T (from the target distribution), and two parameters k and k′. It then chooses a subset
T l ⊂ T to be labeled, queries the labels of points in T l, and outputs a k-NN predictor on S∪T l (see
Algorithm 1). The subset T l is chosen so that the resulting labeled set S ∪ T l is a (k, k′)-NN-cover
for the target sample T .

Definition ((k, k′)-NN-cover). Let T ⊆ X be a set of elements in a metric space (X , ρ) and let
k, k′ ∈ N with k ≤ k′. A setR is a (k, k′)-NN-cover for T , if for every x ∈ T , either x ∈ R or there
are k elements from R among the k′ nearest neighbors of x in T ∪R, that is |k′(x, T ∪R)∩R| ≥ k.

Our loss bound in Section 3 (Theorem 1) holds whenever T l ∪ S is some (k, k′)-NN-cover of T .
Algorithm 2 provides a simple strategy to find such a cover: add to T l all points x whose k′ nearest
neighbors among S ∪ T include fewer than k source examples. It is easy to see that this will always
result in a (k, k′)-NN-cover of T . Furthermore, this approach has a query safety property: the set T l
produced by Algorithm 2 satisfies T l ∩Q = ∅ where Q = {x ∈ T : |k′(x, S ∪ T ) ∩ S| ≥ k} is the
set of target examples that have k source neighbors among their k′ nearest neighbors in S ∪ T . In
other words, Algorithm 2 will not query the label of any target example in regions with sufficiently
many labeled source examples nearby, a property used in the query guarantee of Theorem 2.

In order to make as few label queries as possible, we would like to find the smallest subset T l of
T to be labeled such that T l ∪ S is a (k, k′)-NN-cover of T . This problem is a special case of
MINIMUM MULTISET MULTICOVER, a generalization of the well-known NP-hard MINIMUM SET
COVER problem (see [4], Chapter 13.2). In Appendix B we discuss this problem further and give an
efficient approximation algorithm we call EMMA.

While EMMA does not have the same query safety property enjoyed by Safe, we can ensure that
an intelligent query strategy like EMMA still has the desired query safety property by first running
Safe and then passing the resulting set Tsafe to EMMA as its unlabeled sample. We call the resulting
strategy for finding a (k, k′)-NN-cover Safe-EMMA.

3 Performance guarantees

In this section, we analyze the expected loss of the output classifier of ANDA as well as its querying
behavior. The bound in Section 3.1 on the loss holds for ANDA with any of the sub-procedures
presented in Section 2. To simplify the presentation we use ANDA as a placeholder for any of
ANDA-Safe , ANDA-EMMA and ANDA-Safe-EMMA . The bounds on the number of queries in
Section 3.2 hold for ANDA-Safe and ANDA-Safe-EMMA , which we group under the placeholder
ANDA-S . The proofs of all results in this section have been moved to the appendix.

3.1 Bounding the loss

We now provide bounds on the loss of the output classifier of Algorithm 1. We start with presenting
finite sample bounds under the assumption that the regression function η satisfies a λ-Lipschitz
condition. That is, we have |η(x)− η(x′)| ≤ λρ(x, x′) for all x, x′ ∈ XS ∪ XT .
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Our bound on the expected loss in Theorem 1 is shown using standard techniques for nearest neigh-
bor analysis. However, since our algorithm does not predict with a fully labeled sample from the
target distribution (possibly very few of the target generated examples get actually labeled and the
prediction is mainly based on source generated examples), we need to ensure that the set of labeled
examples still sufficiently covers the target task. The following lemma serves this purpose. It bounds
the distance of an arbitrary domain point x to its k-th nearest labeled point in terms of its distance
to its k′-th nearest target sample point. Note that the bound in the lemma is easy to see for points in
T . However, we need it for arbitrary (test-) points in the domain.
Lemma 1. Let T be a finite set of points in a metric space (X , ρ) and let R be a (k, k′)-NN-cover
for T . Then, for all x ∈ X we have

ρ(x, xk(x,R)) ≤ 3ρ(x, xk′(x, T ))

This lemma allows us to establish the finite sample guarantee on the expected loss of the classifier
output by ANDA. Note that the guarantee in the theorem below is independent of the size and the
generating process of S (except for the labels being generated according to η), while possibly (if
S covers the target sufficiently) only few target points are queried for labels. Recall that Nε(X , ρ)
denotes the ε-covering number of a metric space.
Theorem 1. Let (X , ρ) be a metric space and let PT be a (target) distribution over X ×{0, 1} with
λ-Lipschitz regression function η. Then for all k′ ≥ k ≥ 10, all ε > 0, and any unlabeled sample
size mT and labeled sequence S = ((x1, y1), . . . , (xmS , ymS )) with labels yi generated by η,

E
T∼DmTT

[LT (ANDA(S, T, k, k′))] ≤ (1 +
√

8/k)LT (h∗) + 9λε+
2 Nε(XT , ρ) k′

mT
.

The proof employs standard techniques (as in [5]) and incorporates our bound on the k nearest
labeled points of Lemma 1. We also prove that ANDA is consistent in a slightly more general
setting, namely if the regression function is uniformly continuous and the Nε(XT , ρ) are finite. This
result can be found in Appendix C.

3.2 Bounding the number of queries

In this section, we show that our algorithm automatically adapts the number of label queries to
the similarity of source and target task. We provide finite sample bounds that imply that with a
sufficiently large source sample, with high probability, ANDA-S does not query at all in areas
where the weight ratio of balls is bounded from below; i.e. it only queries where it is “needed.”
Recall that Bk,T (x) denotes the smallest ball around x that contains the k nearest neighbors of x in
T and β(B) = DS(B)/DT (B) is the weight ratio. Let B denote the class of balls in (X , ρ).
Theorem 2. Let δ > 0, w > 0 and C > 1. Let mT be some target sample size and let the source
sample size satisfy

mS ≥ max

{
4

(
3 VCdim(B)mT

C kw

)
ln

(
3 VCdim(B)mT

C kw

)
,

3 ln(6/δ)mT

C kw
,

9mT

C w

}
,

for some k that satisfies k ≥ 9 (VCdim(B) ln(2mT ) + ln(6/δ)) and mT > k′ = (C + 1)k. Then,
with probability at least 1 − 2δ over samples S of size mS (i.i.d. from PS) and T of size mT (i.i.d.
from DT ), ANDA-S on input S, T, k, k′ will not query any points x ∈ T with β(BCk,T (x)) > w.

Theorem 2 implies that if the source and target distributions happen to be identical or very close
then, given that ANDA-S is provided with a sufficiently large source sample, it will not make any
label queries at all. The same holds true if the weight ratio between source and target is uniformly
lower bounded by some constant w > 0. Moreover, the theorem shows that, independent of an
overall source/target relatedness measure, the querying of ANDA-S adapts automatically to a local
relatedness measure in form of a weight ratio of balls around target sample points. ANDA-S queries
only in areas that are not sufficiently supported by the source, that is, in areas where it is needed.

4 Experiments

Our experiments on synthetic data illustrate ANDA’s adaptation ability and show that its classifi-
cation performance compares favorably with baseline passive nearest neighbor methods. See Ap-
pendix E for experimental methods and results.
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A Related work

There is a rich body of applied studies for transfer or domain adaptation learning [6], and on selective
sampling or active learning [7]. As mentioned in the introduction, there are also some recent studies
that incorporate active learning strategies to deal with change in distributions. We thus focus our
discussion on studies that formally analyze such algorithms and provide performance guarantees
now.

For domain adaptation, even under covariate shift, performance guarantees usually involve an extra
additive term that measures the difference between source and target tasks (that is the loss does not
converge to the target optimal optT but to optT + ∆, where ∆ is some measure of distance between
distributions) [8, 9], or they rely on strong assumptions, such as the target support being a subset
of the source support and the density ratio between source and target being bounded from below
[10, 11]. The case where the target is partly supported in regions that are not supported by the
source (that is, there is no bound on the density ratio), is considered to be more realistic [12], yet
also particularly challenging. There are heuristics, that aim to find a suitable mapping of source and
target into some common space [13], but the success of any such method again relies on very strong
prior knowledge about source and target relatedness. We show that our method guarantees small
loss independently of any source target relatedness.

The theory of active learning has received a lot of attention in recent years (see [14] for a survey on
the main directions). Active learning has mostly been studied in a parametric setting (that is, learning
some hypothesis classH) and benefits and limitations of active querying strategies have been proven
in the realizable setting [15, 16] as well as in the agnostic case [17, 18]. However, the main goal
incorporating active queries in all these works is to learn a classifier with low error while using fewer
labels. In contrast, we focus on a different aspect of potential benefits of incorporating active queries
and formally establish that being active is also useful to adapt to changing environments.

Nearest neighbor methods have been studied for decades [19, 20, 21]. Due to their flexibility, nearest
neighbor methods suffer from a curse of dimension, both computationally and statistically. How-
ever, recently, there has been renewed interest in these methods and ways to overcome the curse of
dimensionality. It has been proven that the generalization performance actually scales with notions
of intrinsic dimension, which can be lower than the dimension of the feature space [22]. Several re-
cent studies have shown how to perform nearest neighbor search more efficiently [23, 24]. Selective
sampling for nearest neighbor classification has been shown to be consistent under certain condi-
tions on the querying rule [25]; however, this work considers a data stream that comes from a fixed
distribution (as opposed to our covariate shift setting). A 1-nearest neighbor algorithm has been an-
alyzed under covariate shift [11]; however, that study assumes a fixed lower bound on a weight ratio
between source and target, and therefore does not apply to settings where the target is supported in
areas where the source is not. In our work, we argue that the flexibility of nearest neighbor methods
(or non-parametric methods in general) can be utilized for being adaptive to changing environments;
particularly so for choosing where to query for labels by detecting areas of the target task that are
not well supported by the source.

B Finding a small (k, k′)-NN-cover

In order to make as few label queries as possible, we would like to find the smallest subset T l of
T to be labeled such that T l ∪ S is a (k, k′)-NN-cover of T . This problem is a special case of
MINIMUM MULTISET MULTICOVER, a generalization of the well-known NP-hard MINIMUM SET
COVER problem (see [4], Chapter 13.2).
Definition (MINIMUM MULTISET MULTICOVER). Given a universe U of n elements, a collection
of multisets S, and a coverage requirement re for each element e ∈ U , we say that a multiset S ∈ S
covers element e once for each copy of e appearing in S. The goal is to find the minimum cardinality
set C ⊆ S such that every element e ∈ U is covered at least re times by the multisets in C.
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Algorithm 3 EMMA: Efficient multiset multicover approximation for finding a (k, k′)-NN-cover
input Labeled sample S, unlabeled sample T , parameters k, k′
T l ← ∅
for all x ∈ T do
rx ← max(0, k − k′(x, T ∪ S) ∩ S)
nx ← |{x′ ∈ T : rx′ > 0 ∧ x ∈ k′(x′, S ∪ T )}|

end for
while {x ∈ T : rx > 0} 6= ∅ do
T l ← T l ∪ argmaxx∈T\T l rx + nx
for all x ∈ T do
rx ← max(0, k − k′(x, T ∪ S) ∩ (S ∪ T l))
nx ← |{x′ ∈ T \ T l : rx′ > 0 ∧ x ∈ k′(x′, S ∪ T )}|

end for
end while
return T l

We can phrase the problem of finding the smallest T l such that T l ∪ S is a (k, k′)-NN-cover of T
as a MINIMUM MULTISET MULTICOVER problem as follows. Let U = T and set the coverage
requirements as rx = max(0, k − |k′(x, S ∪ T ) ∩ S|) for each x ∈ T . The collection S contains
a multiset Sx for each x ∈ T , where Sx contains k copies of x and one copy of each element in
{x′ ∈ T : x ∈ k′(x′, S ∪ T )}. By construction, a minimum multiset multicover of this instance is
also a minimum (k, k′)-NN-cover and vice versa.

While MINIMUM MULTISET MULTICOVER is NP-hard to solve exactly, a greedy algorithm ef-
ficiently provides an approximate solution (see Section B.1). Algorithm 3 formalizes this as an
ANDA subroutine called EMMA for finding a small (k, k′)-NN-cover. In the language of (k, k′)-
NN-covers, in each round EMMA computes the helpfulness of each x ∈ T in two parts. The
remaining coverage requirement rx is the number of times x would cover itself if added to T l (that
is, the savings from not having to use rx additional neighbors of x), and the total neighbor coverage
nx is the number of times x would cover its neighbors if added to T l. EMMA then selects the point
x with the largest sum rx + nx among all points in T that have not yet been added to T l.

In its most basic form, EMMA does not have the same query safety property enjoyed by Safe
because the greedy strategy may elect to query labels of target examples that were already fully
covered by source examples. We can ensure that an intelligent query strategy like EMMA still
has the desired query safety property by first running Safe and then passing the resulting set Tsafe
to EMMA as its unlabeled sample. We call the resulting strategy for finding a (k, k′)-NN-cover
Safe-EMMA.

B.1 Approximation guarantees

MINIMUM MULTISET MULTICOVER is known to remain NP-hard even when the multisets in S
are small. However, a small upper bound b on the maximum size of any multiset in S can make
the problem much easier to approximate. Specifically, the greedy algorithm has an approximation
factor of Hb, the b-th harmonic number [26]. This is known to be essentially optimal under standard
hardness assumptions.

In our setting, the size of the largest multiset is determined by the point x ∈ T with the largest
number of points in S ∪ T having x as one of their k′ nearest neighbors. In general metric spaces
this can be up to m = mS + mT , resulting in a multiset of size m + k and an approximation
factor of Hm+k = O(logm). However, in spaces with doubling-dimension γ, it is known that
b ≤ k′4γ log3/2(2L/S) where L and S are respectively the longest and shortest distances between
any two points in T [27].

C Consistency

We show that ANDA is consistent in a slightly more general setting, namely if the regression func-
tion is uniformly continuous and the Nε(X , ρ) are finite. Note that this is the case, for example, if
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(X , ρ) is compact and η is continuous. Recall that, a function η : X → R is uniformly continuous if
for every γ > 0 there exists a δ such that for all x, x′ ∈ X , ρ(x, x′) ≤ δ ⇒ |η(x)− η(x′)| ≤ γ.
Corollary 1. Let (X , ρ) be a metric space with finite covering numbers Nε(X , ρ), and let P(X , ρ)
denote the class of distributions over X ×{0, 1} with uniformly continuous regression functions. Let
(ki)i∈N, (k′i)i∈N and (mi)i∈N be non-decreasing sequences of natural numbers with k′i ≥ ki for
all i, and ki → ∞, k′i → ∞,mi → ∞ and (k′i/mi) → 0 as i → ∞. Let (Si)i∈N be a sequence
of labeled domain points, that is for all i we have Si ∈ (X × {0, 1})n for some n. Then for any
distribution PT ∈ P(X , ρ), we have

lim
i→∞

E
T∼PmiT

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗).

Proof. We need to show that for every α > 0, there exists an index i0, such that
ET∼PmiT

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗) + α for all i ≥ i0. Let PT ∈ P(X , ρ) and α

be given.

Let γ be so that 9γ ≤ α/3. Since η is uniformly continuous, there is a δ, such that for all x, x′ ∈ X ,
ρ(x, x′) ≤ δ ⇒ |η(x) − η(x′)| ≤ γ. Note that the only way we used the λ-Lipschitzness in the
proof of Theorem 1 is by using that for any two points x, x′ that lie in a common element C of an
ε-cover of the space, we have |η(x)−η(x′)| ≤ λε. Thus, we could now repeat the proof of Theorem
1, using a δ-cover of the space and obtain that

E
T∼DmTT

[LT (ANDA(S, T, k, k′))] ≤ (1 +
√

8/k)LT (h∗) + 9γ +
2 Nδ(XT , ρ) k′

mT
.

for all k ≥ 10 and k′ ≥ k.

Let i1 be so that
√

8
ki
≤ α

3 for all i ≥ i1. Note that this implies
√

8
ki
LT (h∗) ≤ α

3 for

all i ≥ i1. Since (k′i/mi) → 0 as i → ∞, we can choose i2 be so that 2Nδ(XT ,ρ) k′i
mi

≤
α/3 for all i ≥ i2. Together these imply that for all i ≥ i0 := max{i1, i2}, we have
ET∼PmiT

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗) + α as desired.

D Proofs

D.1 Proof of Lemma 1

Proof. Let x ∈ X . If the set k′(x, T ) of the k′ nearest neighbors of x in T contains k points from
R, we are done (in this case we actually have ρ(x, xk(x,R)) ≤ ρ(x, xk′(x, T ))). Otherwise, let
x′ ∈ k′(x, T ) \ R be one of these points that is not in R. Since R is a (k, k′)-NN-cover for T , and
x′ ∈ T , the set of the k′ nearest neighbors of x′ in R ∪ T contains k elements from R.

Let x′′ be any of these k elements, that is x′′ ∈ R ∩ k′(x′, R ∪ T ). Note that ρ(x′, x′′) ≤
2ρ(x, xk′(x, T )) since x′ is among the k′ nearest neighbors of x and x′′ is among the k′ nearest
neighbors of x′ in R ∪ T . Thus, we have

ρ(x, x′′) ≤ ρ(x, x′) + ρ(x′, x′′) ≤ ρ(x, xk′(x, T )) + 2ρ(x, xk′(x, T )) = 3ρ(x, xk′(x, T ))

which completes the proof.

D.2 Proof of Theorem 1

We adapt the proof (guided exercise) of Theorem 19.5 in [5] to our setting. As is done there, we
use the notation y ∼ p to denote drawing from a Bernoulli random variable with mean p. We will
employ the following lemmas:
Lemma 2 (Lemma 19.6 in [5]). Let C1, . . . , Cr be a collection of subsets of some domain set, X .
Let S be a sequence of m points sampled i.i.d. according to some probability distribution, D over
X . Then, for every k ≥ 2,

E
S∼Dm

 ∑
i:|Ci∩S|<k

P[Ci]

 ≤ 2rk

m
.
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Lemma 3 (Lemma 19.7 in [5]). Let k ≥ 10 and let Z1, . . . , Zk be independent Bernoulli random
variables with P[Zi = 1] = pi. Denote p = 1

k

∑
i pi and p′ = 1

k

∑k
i=1 Zi. Then

E
Z1,...,Zk

P
y∼p

[y 6= 1[p′ > 1/2]] ≤

(
1 +

√
8

k

)
P
y∼p

[y 6= 1[p > 1/2]] .

Before we prove the theorem, we show the following:
Claim 1 (Ex. 3 of Chapter 19 in [5]). Fix some p, p′ ∈ [0, 1] and y′ ∈ {0, 1}. Then

P
y∼p

[y 6= y′] ≤ P
y∼p′

[y 6= y′] + |p− p′| .

Proof. If y′ = 0, we have

P
y∼p

[y 6= y′] = p = p− p′ + p′

= P
y∼p′

[y 6= y′] + p− p′

≤ P
y∼p′

[y 6= y′] + |p− p′|.

If y′ = 1, we have

P
y∼p

[y 6= y′] = 1− p = 1− p− p′ + p′

= P
y∼p′

[y 6= y′]− p+ p′

≤ P
y∼p′

[y 6= y′] + |p− p′|.

Proof of Theorem 1. Let hST denote the output classifier of Algorithm 1. Let C = {C1, . . . , Cr}
denote an ε-cover of the target support (XT , ρ), that is,

⋃
i Ci = XT and each Ci has diameter at

most ε. Without loss of generality, we assume that the Ci are disjoint and for a domain point x ∈ X
we let C(x) denote the element of C that contains x. Let L = T l ∪ S denote the (k, k′)-NN-cover
of T that ANDA uses (that is, the set of labeled points that hST uses for prediction). We bound its
expected loss as follows:

E
T∼DTmT

[LPT (hST )]

= E
T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y]

]
≤ E

T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y ∧ ρ(x, xk′(x, T )) > ε

]
+ P

(x,y)∼PT
[hST (x) 6= y ∧ ρ(x, xk′(x, T )) ≤ ε]]

≤ E
T∼DTmT

[
P

(x,y)∼PT
[ρ(x, xk′(x, T )) > ε

]
+ P

(x,y)∼PT
[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]]

≤ E
T∼DTmT

[
P

(x,y)∼PT
[ρ(x, xk′(x, T )) > ε]

]
+ E
T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]

]
≤ E

T∼DTmT

[
P

(x,y)∼PT
[|T ∩ C(x)| < k′]

]
+ E
T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]

]
.

For the first summand of the last inequality, we used that a point x can only have distance more than
ε to its k′-th nearest neighbor in T if C(x) is hit less than k′ times by T . Lemma 2 implies that this
first summand is bounded in expectation by 2Nε(X ,ρ) k′

mT
.

To bound the second summand, we now first fix a sample T and a point x such that ρ(x, xk′(x, T )) ≤
ε (and condition on these). Since the set of labeled pointsL = T l∪S used for prediction is an (k, k′)-
NN-cover of T , Lemma 1 implies that there are at least k labeled points in L at distance at most 3ε
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from x. Let k(x, L) = {x1, . . . , xk} be the k nearest neighbors of x in L, let pi = η(xi) and set
p = 1

k

∑
i pi. Now we get

P
y1∼p1,...yk∼pk,y∼η(x)

[hST (x) 6= y] = E
y1∼p1,...yk∼pk

[
P

y∼η(x)
[hST (x) 6= y]

]
≤ E

y1∼p1,...yk∼pk

[
P
y∼p

[hST (x) 6= y]

]
+ |p− η(x)|

≤

(
1 +

√
8

k

)
P
y∼p

[y 6= 1[p > 1/2]] + |p− η(x)|,

where the first inequality follows from Claim 1 and the second from Lemma 3. We have

P
y∼p

[1[p > 1/2] 6= y] = p = min{p, 1− p} ≤ min{η(x), 1− η(x)}+ |p− η(x)| .

Further, since the regression function η is λ-Lipschitz and ρ(xi, x) ≤ 3ε for all i, we have

|p− η(x)| =

∣∣∣∣∣
(

1

k

∑
i

pi

)
− η(x)

∣∣∣∣∣
=

∣∣∣∣∣
(

1

k

∑
i

η(xi)

)
− η(x)

∣∣∣∣∣
=

∣∣∣∣∣
(

1

k

∑
i

η(xi)− η(x) + η(x)

)
− η(x)

∣∣∣∣∣
≤

∣∣∣∣∣
(

1

k

∑
i

3λε+ η(x)

)
− η(x)

∣∣∣∣∣
=

∣∣∣∣∣3λε+

(
1

k

∑
i

η(x)

)
− η(x)

∣∣∣∣∣ = 3λε.

Thus, we get

P
y1∼p1,...yk∼pk,y∼η(x)

[hST (x) 6= y] = E
y1∼p1,...yk∼pk

[
P

y∼η(x)
[hST (x) 6= y]

]
≤
(

1 +
√

8
k

)
P
y∼p

[y 6= 1[p > 1/2]] + |p− η(x)|

≤
(

1 +
√

8
k

)
(min{η(x), 1− η(x)}+ |p− η(x)|) + |p− η(x)|

≤
(

1 +
√

8
k

)
(min{η(x), 1− η(x)}) + 3|p− η(x)|

≤
(

1 +
√

8
k

)
(min{η(x), 1− η(x)}) + 9λε.
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Since this holds for all samples T and points x with ρ(x, xk′(x, T )) ≤ ε, we get,

E
T∼DTmT

[ P
(x,y)∼PT

[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]]

= P
(x,y)∼PT , T∼DTmT

[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]

= E
x∼DT

[
P

y∼η(x), T∼DTmT
[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]

]
≤ E

x∼DT

[(
1 +

√
8
k

)
(min{η(x), 1− η(x)}) + 9λε

]
=

(
1 +

√
8
k

)
E

x∼DT
[(min{η(x), 1− η(x)})] + 9λε

=

(
1 +

√
8

k

)
LT (h∗T ) + 9λε,

where the rearrangement in the first two steps is by Fubini’s theorem. This yields

E
T∼DTmT

[LPT (hST )] ≤ E
T∼DTmT

[
P

(x,y)∼PT
[|T ∩ C(x)| < k′]

]
+ E
T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]

]
≤ 2 Nε(XT , ρ) k′

mT
+

(
1 +

√
8

k

)
LT (h∗T ) + 9λε,

which completes the proof.

D.3 Proof of Theorem 2

In our analysis, we employ Lemma 4 below. It follows from VC-theory [28] and appears in [22]. We
let Ŝ, T̂ denote empirical distributions according to source or target sample S and T , respectively.
Lemma 4 (Lemma 1 in [22]). Let B denote the class of balls in (X , ρ), and let D be a distribution
over X . Let 0 < δ < 1, and define αn = (VCdim(B) ln(2n) + ln(6/δ))/n. The following holds
with probability at least 1 − δ (over a sample T of size n drawn i.i.d. from D) for all balls B ∈ B:
if a ≥ αn, then T̂ (B) ≥ 3a implies D(B) ≥ a and D(B) ≥ 3a implies T̂ (B) ≥ a.

With this we can prove the query bound of Theorem 2.

Proof. Note that mS ≥ 4
(

3VCdim(B)mT
C kw

)
ln
(

3VCdim(B)mT
C kw

)
, implies that mS ≥(

3VCdim(B)mT
C kw

)
ln(2mS), and together with the second lower bound (in the max) on mS , this

yields

mS
C kw

3mT
≥ VCdim(B) ln(2mS) + ln(6/δ). (1)

We now assume that S and T are so that the implications in Lemma 4 are valid (this holds with
probability at least 1 − 2δ over the samples S and T ). Let x ∈ T be such that β(BCk,T (x)) > w.
By definition of the ball BCk,T (x), we have T̂ (BCk,T (x)) = Ck

mT
, and by our choice of k, therefore

T̂ (BCk,T (x)) =
C k

mT
≥ C 9 (VCdim(B) ln 2mT + ln 6/δ)

mT
.

Now Lemma 4 implies that DT (BCk,T (x)) ≥ C k
3mT

, so the condition on the weight ratio of this
ball now yields

DS(BCk,T (x)) ≥ C kw

3mT
= mS

C kw

3mT mS
≥ VCdim(B) ln(2mS) + ln(6/δ)

mS
,
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Figure 1: (a) Visualization of snythetic data and query strategies for ANDA-Safe (left) and ANDA-
Safe-EMMA (right). Red and blue circles represent labeled source examples, black circles represent
unqueried target examples, and green stars represent queried target examples. (b) Experimental
results comparing our approach to baseline methods. Error bars represent two standard errors, or
roughly a 95% confidence interval.

where the last inequality follows from Equation (1). Now, Lemma 4, together with the assumption
mS ≥ 9mT

C w (the third term in the max), implies Ŝ(BCk,T (x)) ≥ C kw
9mT

≥ k
mS

. This means
that BCk,T (x) contains k examples from the source, which implies that among the k′ = Ck + k
nearest sample points (in S ∪T ) there are k source examples, and therefore x will not be queried by
ANDA-S .

E Experiments

Our experiments on synthetic data demonstrate ANDA’s adaptation ability and show that its classifi-
cation performance compares favorably with baseline passive nearest neighbor methods. The source
marginal DS was taken to be the uniform distribution over [−1, 0.5]2 and the target marginal DT

was set to uniform over [−0.75, 1]2. This ensures enough source/target overlap so the source data
is helpful in learning the target task but not sufficient to learn well. The regression function chosen
for both tasks was η(x, y) = (1/2)(1 − (sin(2πx) sin(2πy))1/6) for (x, y) ∈ R2. This creates a
4 × 4 checkerboard of mostly-positively and mostly-negatively labeled regions with noise on the
boundaries where η crosses 1/2. Training samples from this setting are pictured in Figure 1a.

The baseline algorithms we compare against are the following. The “source only” algorithm predicts
according to a k-NN classifier built on a source sample alone. The “target only” algorithm creates
a k-NN classifier on a random sample from the target, and the “source + target” does the same but
includes labeled data from a source sample as well.

We compare the generalization error of ANDA-Safe-EMMA and ANDA-Safe against these base-
lines across a range of unlabeled target sample sizes. Since the number of queries made by both
ANDA-Safe-EMMA and ANDA-Safe increases with target sample size, this generates a range of
query counts for the active algorithms. The baseline algorithms were given labeled target samples
of sizes in the same range as these query counts. For all algorithms and target sample sizes we fixed
mS = 3200, k = 7 and k′ = 21. Figure 1b shows the resulting generalization error for each algo-
rithm as a function of the number of target labels used. Each point in the plot represents an average
over 100 independent trials.

Both active algorithms perform significantly better than the passive baselines in terms of the error
they achieve per target label query. ANDA-Safe-EMMA outperforms ANDA-Safe as well, since
(as demonstrated in Figure 1a) it can achieve full coverage of the target region with many fewer
queries.
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