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Margins
Intuition: Learning should be easy when data is far
from the decision boundary

Definition: The LqLp margin of w w.r.t. D is

γq,p(w) = inf
x∼D

|w · x|
‖w‖q ‖x‖p

where 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1.

The Margin Spectrum:
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[Grove et al., 2001; Servedio, 2002]

Contributions

• Sample complexity bound covering the entire
spectrum of margins

• Su�cient condition on data under which large
margins lead to fast learning

• Upper and lower bounds for a family of problems
showing a concrete advantage for p = 1

• Experimental con�rmation that the theoretical
results are relevant in practice

Discussion

• Important to consider entire margin spectrum

• Performance depends on both γ and ‖X‖2,p
• Non-realizable case: Lq-norm regularization

• Relative sparsity of data and weight vector

Open questions:

• Algorithms that adaptively choose optimal p

• Generalization to multiple kernel learning

• Use ‖X‖2,p to aid feature selection

Generalization Bound

Theorem 1. Let ‖X‖p =
(

supx∼D ‖x‖p
)

and

‖X‖2,p :=

( d∑
i=1

( n∑
j=1

|xji |2
)p/2)1/p

If there are constants C = C(d, p) and 0 ≤ α < 1 such
that ‖X‖2,p ≤ Cnα ‖X‖p for any data set from D, then
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samples suffices to achieve error ε for any 1 ≤ p <∞.

Proof summary:
• Novel bound on fat-shattering dimension
• Use Khintchine inequality and bound on ‖X‖2,p
• Apply standard generalization error bound

Bounding the L2,p-norm
Theoretically:
When C = 1, can always use α = 1/2 when p ≥ 2,
but may need as much as α = 1/p when p < 2.

In reality:
For almost all data sets tested, we can bound ‖X‖2,p
with C = 1 and α ≤ 1/2, regardless of p.
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Histogram of α estimates on 47 real data sets

Example 1: Unhelpful Margins

Basis vectors with w∗ ∈ {−1, 1}d.

w∗: ++-+++-+--+--++---

D: 000100000000000000 +
000000000001000000 -
000000000100000000 -

...

p 1 2 ∞
γq,p(w

∗) 1 1/
√
d 1/d

‖X‖2,p
√
dn

√
n

√
n/d

s.c. Õ(d/ε) Õ(d/ε) Õ(d/ε)

Also have lower bound of Ω̃(d).

Example 2: Helpful Margins

Divide the d coordinates evenly into k blocks.

w∗: ++++++------++++++

D: 111111000000000000 +
000000000000111111 +
000000111111000000 -

...

p 1 2 ∞
γq,p(w

∗) 1 1/
√
k 1/k

‖X‖2,p
√
kn

√
n

√
n/k

s.c. Õ(k/ε) Õ(k/ε) Õ(k/ε)

Signi�cant improvement when k = o(d).

Synthetic and Real Data Results

Synthetic data (top):
Blocks, Gaussian

Real data (bottom):
Fertility, SPECTF, CNAE-9 50 100 150 200 250 300 350 400 450 500
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Experiments

LqLp SVM: Given a set of n training examples, we
can e�ciently solve the convex program

min
w

‖w‖q + C
n∑
i=1

ξi

s.t.
yi(w · xi)
‖xi‖p

≥ 1− ξi, 1 ≤ i ≤ n.

Equivalent to minimizing the hinge loss of an Lp-
normalized data set using Lq-norm regularization.

Empirical advantage for p = 1 on synthetic data and
on several real data sets from the UCI repository.

Making the Case for L∞L1 Margins

Divide the d coordinates evenly into k blocks.

Distribution D randomly picks a block and either
• sets to 1 a single variable in the block or
• sets to 1 exactly d/(2k) variables in the block.

Target w∗ maximizes L∞L1 margin.

w∗: ++++++------++++++

D: 001000000000000000 +
000000011001000000 -
000000000000110001 +
000000100000000000 -

...

Theorem 2. If k = O(d1/4) and ε = Ω(d−1/4) in the
above learning setting, then any algorithm restricted to us-
ing the large-margin class

Wp = {w ∈ Rd : γq,p(w) ≥ γq,p(w∗)}

for a fixed p has sample complexity

p = 1: Õ(
√
d)

p > 1: Ω̃(d).

Proof summary:
• W1: ++++++------ (unanimous on each block)
• W2: +++-++-+---- (some dissenters allowed)
• W∞: ++--+--+++-- (any w ∈ {−1, 1}d)
• Bound covering number for each Wp

• Apply distribution-speci�c s.c. bounds


