A New Perspective on Learning Linear Separators with Large $L_q L_p$ Margins

Maria-Florina Balcan and Christopher Berlind

Margins

Intuition: Learning should be easy when data is far from the decision boundary

Definition: The $L_a L_p$ margin of w w.r.t. D is

Generalization Bound

Theorem 1. Let
$$||X||_p = \left(\sup_{x \sim D} ||x||_p\right)$$
 and

$$\|\mathbf{X}\|_{2,p} := \left(\sum_{i=1}^{d} \left(\sum_{j=1}^{n} |x_i^j|^2\right)^{p/2}\right)^{1/p}$$

If there are constants C = C(d, p) and $0 \le \alpha < 1$ such that $\|\mathbf{X}\|_{2,p} \leq Cn^{\alpha} \|X\|_{p}$ for any data set from D, then

Bounding the $L_{2,p}$ -norm

Theoretically:

When C = 1, can always use $\alpha = 1/2$ when $p \ge 2$, but may need as much as $\alpha = 1/p$ when p < 2.

In reality:

For almost all data sets tested, we can bound $\|\mathbf{X}\|_{2,n}$ with C = 1 and $\alpha \leq 1/2$, regardless of p.

$$\gamma_{q,p}(w) = \inf_{x \sim D} \frac{|w \cdot x|}{\|w\|_q \|x\|_p}$$

where $1 \le p, q \le \infty$ and 1/p + 1/q = 1.

The Margin Spectrum:

Contributions

- Sample complexity bound covering the entire spectrum of margins
- Sufficient condition on data under which large

samples suffices to achieve error ϵ for any $1 \leq p < \infty$.

Proof summary:

- Novel bound on fat-shattering dimension
- Use Khintchine inequality and bound on $\|\mathbf{X}\|_{2,p}$
- Apply standard generalization error bound

Example 1: Unhelpful Margins

Basis vectors with $w^* \in \{-1, 1\}^d$.

- w^* :
- D: 0001000000000000000000 +
 - 0000000000**1**000000
 - 00000000**1**0000000 -

margins lead to fast learning

- Upper and lower bounds for a family of problems showing a concrete advantage for p = 1
- Experimental confirmation that the theoretical results are relevant in practice

Discussion

- Important to consider entire margin spectrum
- Performance depends on both γ and $\|\mathbf{X}\|_{2,p}$
- Non-realizable case: L_q -norm regularization
- Relative sparsity of data and weight vector

Open questions:

- Algorithms that adaptively choose optimal p
- Generalization to multiple kernel learning
- Use $\|\mathbf{X}\|_{2,p}$ to aid feature selection

 $\tilde{O}(d/\epsilon) = \tilde{O}(d/\epsilon) = \tilde{O}(d/\epsilon)$ S.C.

Also have lower bound of $\tilde{\Omega}(d)$.

Making the Case for $L_{\infty}L_1$ Margins

Divide the d coordinates evenly into k blocks.

Distribution D randomly picks a block and either • sets to 1 a single variable in the block or • sets to 1 exactly d/(2k) variables in the block.

Target w^* maximizes $L_{\infty}L_1$ margin.

- ++++++ w^* :
- D: 00100000000000000000 +
 - 000000011001000000
 - 00000000000110001 +

—

0.32

ม 0.30

5 0.28

b 0.26

گ 0.24

0.22

0.20 L 20

000000**1**00000000000 -

$\left\|\mathbf{X} ight\|_{2,p}$ $\tilde{O}(k/\epsilon) \quad \tilde{O}(k/\epsilon) \quad \tilde{O}(k/\epsilon)$ S.C.

Significant improvement when k = o(d).

Theorem 2. If $k = O(d^{1/4})$ and $\epsilon = \Omega(d^{-1/4})$ in the above learning setting, then any algorithm restricted to using the large-margin class

 $W_p = \{ w \in \mathbb{R}^d : \gamma_{q,p}(w) \ge \gamma_{q,p}(w^*) \}$

for a fixed p has sample complexity

- p = 1: $\tilde{O}(\sqrt{d})$ p > 1: $\tilde{\Omega}(d)$.
 - (unanimous on each block) (some dissenters allowed)
- W_{∞} : ++--+-- (any $w \in \{-1,1\}^d$) • Bound covering number for each W_p
- Apply distribution-specific s.c. bounds

Experiments

$L_q L_p$ SVM: Given a set of n training examples, we can efficiently solve the convex program

 $\min_{w} \quad \|w\|_{q} + C \sum_{i=1}^{n} \xi_{i}$ s.t. $\frac{y^{i}(w \cdot x^{i})}{\|x^{i}\|_{p}} \ge 1 - \xi_{i}, \quad 1 \le i \le n.$

Equivalent to minimizing the hinge loss of an L_p normalized data set using L_q -norm regularization.

Empirical advantage for p = 1 on synthetic data and on several real data sets from the UCI repository.

Synthetic and Real Data Results

Synthetic data (top): Blocks, Gaussian

Real data (bottom): Fertility, SPECTF, CNAE-9

Proof summary:

• W_1 : +++++-----

• W_2 : +++-+----

p = 1.0625

p = 1.125

p = 1.25

p = 1.5

p = 2.0

p = 3.0

p = 5.0

p = 9.0

- p = 17.0

35

