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Abstract

We give theoretical and empirical results that
provide new insights into large margin learn-
ing. We prove a bound on the generaliza-
tion error of learning linear separators with
large LqLp margins (where Lq and Lp are
dual norms) for any finite p ≥ 1. The bound
leads to a simple data-dependent sufficient
condition for fast learning in addition to ex-
tending and improving upon previous results.
We also provide the first study that shows the
benefits of taking advantage of margins with
p < 2 over margins with p ≥ 2. Our experi-
ments confirm that our theoretical results are
relevant in practice.

1 INTRODUCTION

The notion of “margin” arises naturally in many ar-
eas of machine learning. Margins have long been used
to motivate the design of algorithms, to give sufficient
conditions for fast learning, and to explain unexpected
performance of algorithms in practice. Here we are
concerned with learning the class of homogeneous lin-
ear separators in Rd over distributions with large mar-
gins. We use a general notion of margin, the LqLp
margin, that captures, among others, the notions used
in the analyses of Perceptron (p = q = 2) and Winnow
(p = ∞, q = 1). For p, q ∈ [1,∞] with 1/p + 1/q = 1,
the LqLp margin of a linear classifier x 7→ sign(w · x)
with respect to a distribution D is defined as

γq,p(D,w) = inf
x∼D

|w · x|
‖w‖q ‖x‖p

.

While previous work has addressed the case of p ≥ 2
both theoretically (Grove et al., 2001; Servedio, 2000;
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Gentile, 2003) and experimentally (Zhang, 2002), the
p < 2 case has been mentioned but much less explored.
This gap in the literature is possibly due to the fact
that when p < 2 a large margin alone does not guaran-
tee small sample complexity (see Example 1 below for
such a case). This leads to the question of whether
large LqLp margins with p < 2 can lead to small
sample complexity, and if so, under what conditions
will this happen? Furthermore, are there situations in
which taking advantage of margins with p < 2 can lead
to better performance than using margins with p ≥ 2?

In this work, we answer these three questions using
both theoretical and empirical evidence. We first give
a bound on the generalization error of linear separa-
tors with large LqLp margins that holds for any finite
p ≥ 1. The result is proved through a new bound on
the fat-shattering dimension of linear separators with
bounded Lq norm. The bound improves upon previous
results by removing a factor of log d when 2 ≤ p <∞
and extends the previously known bounds to the case
of 1 ≤ p < 2. A highlight of this theoretical result is
that it gives a simple sufficient condition for fast learn-
ing even for the p < 2 case. The condition is related to
the L2,p norm of the data matrix and can be estimated
from the data.

We then give a concrete family of learning problems in
which using the L∞L1 margin gives significantly better
sample complexity guarantees than for LqLp margins
with p > 1. We define a family of distributions over
labeled examples and consider the sample complexity
of learning the class Wp of linear separators with large
LqLp margins. By bounding covering numbers, we
upper bound the sample complexity of learning W1

and lower bound the complexity of learning Wp when
p > 1, and we show that the upper bound can be
significantly smaller than the lower bound.

In addition, we give experimental results supporting
our claim that taking advantage of large L∞L1 mar-
gins can lead to faster learning. We observe that in
the realizable case, the problem of finding a consis-
tent linear separator that maximizes the LqLp margin
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is a convex program (similar to SVM). An extension
of this method to the non-realizable case is equivalent
to minimizing the Lq-norm regularized hinge loss. We
apply these margin-maximization algorithms to both
synthetic and real-world data sets and find that maxi-
mizing the L∞L1 margin can result in better classifiers
than maximizing other margins. We also show that the
theoretical condition for fast learning that appears in
our generalization bound is favorably satisfied on many
real-world data sets.

Related Work

It has long been known that the classic algorithms
Perceptron (Rosenblatt, 1958) and Winnow (Little-
stone, 1988) have mistake bounds of 1/γ22,2 and

Õ(1/γ21,∞), respectively. A family of “quasi-additive”
algorithms (Grove et al., 2001) interpolates between
the behavior of Perceptron and Winnow by defining a
Perceptron-like algorithm for any p > 1. While this
gives an algorithm for any 1 < p ≤ ∞ the mistake
bound of Õ(1/γ2q,p) only applies for p ≥ 2. For small
values of p, these algorithms can be used to learn non-
linear separators by using factorizable kernels (Gentile,
2013). A related family (Servedio, 2000) was designed
for learning in the PAC model rather than the mistake
bound model, but again, guarantees were only given
for p ≥ 2.

Other works (Kakade et al., 2009; Cortes et al., 2010;
Kloft and Blanchard, 2012; Maurer and Pontil, 2012)
bound the Rademacher complexity of classes of lin-
ear separators under general forms of regularization.
Special cases of each of these regularization methods
correspond to Lq-norm regularization, which is closely
related to maximizing LqLp margin. Kakade et al.
(2009) directly consider the case of Lq-norm regular-
ization but only give Rademacher complexity bounds
for the case of p ≥ 2. Both Cortes et al. (2010) and
Kloft and Blanchard (2012) give Rademacher complex-
ity bounds that cover the entire range 1 ≤ p ≤ ∞ in
the context of multiple kernel learning, but their dis-
cussion of excess risk bounds for different choices of p
is limited to the p ≥ 2 case while our work discusses
the generalization error over the entire range. Maurer
and Pontil (2012) consider the more general setting
of block-norm regularized linear classes but only give
bounds for the case of p ≥ 2. In contrast to our work,
none of the above works give lower bounds on the sam-
ple complexity or give concrete evidence of when some
values of p will result in faster learning than others.

There are a few other cases in the literature where the
p ≤ 2 regime is discussed. Zhang (2002) deals with
algorithms for Lq-norm regularized loss minimization
and discusses cases in which L∞-norm regularization

may be appropriate. Balcan et al. (2013) study the
problem of learning two-sided disjunctions in the semi-
supervised setting and note that the regularity as-
sumption inherent in the problem can be interpreted
as a large L∞L1 margin assumption. A related prob-
lem posed by Blum and Balcan (2007), the “two-sided
majority with margins” problem, has a slightly modi-
fied form which constitutes another natural occurrence
of a large L∞L1 margin (see supplementary material).

2 PRELIMINARIES

Let D be a distribution over a bounded instance space
X ⊆ Rd. A linear separator over X is a classifier
h(x) = sign(w · x) for some weight vector w ∈ Rd.
We use h∗ and w∗ to denote the target function and
weight vector, respectively, so that h∗(x) = sign(w∗ ·x)
gives the label for any instance x and errD(h) =
Prx∼D[h(x) 6= h∗(x)] is the generalization error of any
hypothesis h. We will often abuse notation and re-
fer to a classifier and its corresponding weight vector
interchangeably. We will overload the notation X to
represent either a set of n points in Rd or the d × n
matrix of containing one point per column.

For any point x = (x1, . . . , xd) ∈ Rd and p ≥ 1, the
Lp-norm of x is

‖x‖p =

(
d∑
i=1

|xi|p
) 1
p

and the L∞-norm is ‖x‖∞ = maxi |xi|. Let ‖X‖p
denote supx∈X ‖x‖p, which is finite for any p by our
assumption that X is bounded. The Lq-norm is the
dual of the Lp-norm if 1/p+ 1/q = 1 (so the L∞-norm
and L1-norm are duals). In this work, p and q will
always denote dual norms.

For any weight vector w, the LqLp margin of w with
respect to D is defined as

γq,p(D,w) = inf
x∼D

|w · x|
‖w‖q ‖x‖p

.

We can similarly define γq,p(X, w) for a set X. We
will drop the first argument when referring to the
distribution-based definition and the distribution is
clear from context. We assume that D has a positive
margin; that is, there exists w such that γq,p(D,w) >
0. Note that by Hölder’s inequality, |w·x| ≤ ‖w‖q ‖x‖p
for dual p and q, so γq,p(D,w) ≤ 1.

We also define the La,b matrix norm

‖M‖a,b =

 r∑
i=1

 c∑
j=1

|mij |a
b/a


1/b
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for any r × c matrix M = (mij). In other words, we
take the La-norm of each row in the matrix and then
take the Lb-norm of the resulting vector of La-norms.

2.1 LqLp Support Vector Machines

Given a linearly separable set X of n labeled examples,
we can solve the convex program

min
w

‖w‖q
s.t.

yi(w · xi)
‖xi‖p

≥ 1, 1 ≤ i ≤ n. (1)

to maximize the LqLp margin. Observe that a solution
ŵ to this problem has γq,p(X, ŵ) = 1/ ‖ŵ‖q. We call
an algorithm that outputs a solution to (1) an LqLp
SVM due to the close relationship between this prob-
lem and the standard support vector machine.

If X is not linearly separable, we can introduce non-
negative slack variables in the usual way and solve

min
w,

ξ≥0

‖w‖q + C

n∑
i=1

ξi

s.t.
yi(w · xi)
‖xi‖p

≥ 1− ξi, 1 ≤ i ≤ n.
(2)

which is equivalent to minimizing the hinge loss with
respect to an Lp-normalized data set using Lq-norm
regularization on the weight vector space.

3 GENERALIZATION BOUND

In this section we give an upper bound on the gener-
alization error of learning linear separators over dis-
tributions with large LqLp margins. The proof fol-
lows from combining a theorem of Bartlett and Shawe-
Taylor (1999) with a new bound on the fat-shattering
dimension of the class of linear separators with small
Lq-norm. We begin with the following definitions.

Definition. For a set F of real-valued functions on X,
a finite set {x1, . . . , xn} ⊆ X is said to be γ-shattered
by F if there are real numbers r1, . . . , rn such that
for all b = (b1, . . . , bn) ∈ {−1, 1}n, there is a function
fb ∈ F such that

fb(x
i)

{
≥ ri + γ if bi = 1

≤ ri − γ if bi = −1.

The fat-shattering dimension of F at scale γ, denoted
fatF (γ), is the size of the largest subset of X which is
γ-shattered by F .

Our bound on the fat-shattering dimension will use
two lemmas analogous to Lemmas 11 and 12 in (Serve-
dio, 2000).

Lemma 1. Let F = {x 7→ w · x : ‖w‖q ≤ ‖W‖q}
with 1 ≤ p ≤ ∞. If the set {x1, . . . , xn} ⊆ Xn is γ-
shattered by F then every b = (b1, . . . , bn) ∈ {−1, 1}n
satisfies

∥∥∑n
i=1 bix

i
∥∥
p
≥ γn
‖W‖q

.

Proof. The proof is identical to that of Lemma 11
in (Servedio, 2000), replacing the radius 1/ ‖X‖p of
F in their lemma with ‖W‖q.

The next lemma will depend on the following classical
result from probability theory known as the Khint-
chine inequality.

Theorem 1 (Khintchine). If the random variable σ =
(σ1, . . . , σn) is uniform over {−1, 1}n and 0 < p <∞,
then any finite set {z1, . . . , zn} ∈ C satisfies

Ap

√√√√ n∑
i=1

|zi|2 ≤
(
E

[∣∣∣ n∑
i=1

σizi

∣∣∣p]) 1
p

≤ Bp

√√√√ n∑
i=1

|zi|2

where Ap and Bp are constants depending only on p.

The precise optimal constants for Ap and Bp were
found by Haagerup (1982), but for our purposes, it
suffices to note that when p ≥ 1 we have 1/2 ≤ Ap ≤ 1
and 1 ≤ Bp ≤ √p.
Lemma 2. For any set X = {x1, . . . , xn} ⊆ Xn and
any 1 ≤ p < ∞, there is some b = (b1, . . . , bn) ∈
{−1, 1}n such that

∥∥∑n
i=1 bix

i
∥∥
p
≤ Bp ‖X‖2,p.

Proof. We will bound the expectation of
∥∥∑n

i=1 bix
i
∥∥
p

when b = (b1, . . . , bn) is uniformly distributed over
{−1, 1}n. We have

E

∥∥∥∥∥
n∑
i=1

bix
i

∥∥∥∥∥
p

 = E


 d∑
j=1

∣∣∣ n∑
i=1

εix
i
j

∣∣∣p
1/p


≤

 d∑
j=1

E

[∣∣∣ n∑
i=1

εix
i
j

∣∣∣p]
1/p

≤

 d∑
j=1

Bpp

(
n∑
i=1

|xij |2
)p/21/p

= Bp ‖X‖2,p
where the first inequality is an application of Jensen’s
inequality and the second uses the Khintchine inequal-
ity. The proof is completed by noting that there must
be some choice of b for which the value of

∥∥∑n
i=1 bix

i
∥∥
p

is smaller than its expectation.

We can use these two lemmas to give an upper bound
on the fat-shattering dimension for any finite p.
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Theorem 2. Let F = {x 7→ w · x : ‖w‖q ≤ ‖W‖q}
with 1 ≤ p < ∞. If there is a constant C = C(d, p)
independent of n such that ‖X‖2,p ≤ Cnα ‖X‖p for
any set X of n examples drawn from D, then

fatF (γ) ≤
(
CBp ‖W‖q ‖X‖p

γ

) 1
1−α

.

Proof. Combining Lemmas 1 and 2, we have that any
set X = {x1, . . . , xn} ⊆ Xn that is γ-shattered by F
satisfies γn

‖W‖q
≤ Bp ‖X‖2,p ≤ CBpn

α ‖X‖p. Solving

for n gives us n ≤ (
CBp‖W‖q‖X‖p

γ )1/(1−α) as an upper
bound on the maximum size of any γ-shattered set.

This bound extends and improves upon Theorem 8
in (Servedio, 2000). In their specific setting, ‖W‖q =
1/ ‖X‖p, so we can directly compare their bound

fatF (γ) ≤ 2 log 4d

γ2
(3)

for 2 ≤ p ≤ ∞ to our bound

fatF (γ) ≤
(
CBp
γ

)1/(1−α)

(4)

for 1 ≤ p < ∞. Observe that by Minkowski’s in-
equality, any set X satisfies ‖X‖2,p ≤ n1/2 ‖X‖p if

p ≥ 2. In this case, (4) simplifies to (Bp/γ)2 which
is dimension-independent and improves upon (3) by a
factor of log d when p is constant. When 1 ≤ p < 2,
(3) does not apply, but (4) still gives a bound that can
be small in many cases depending on the relationship
between ‖X‖2,p and γ. We will give specific examples
in Section 3.1.

The fat-shattering dimension is relevant due to the fol-
lowing theorem of Bartlett and Shawe-Taylor (1999)
that relates the generalization performance of a classi-
fier with large margin to the fat-shattering dimension
of the associated real-valued function class at a scale
of roughly the margin of the classifier.

Theorem 3 (Bartlett & Shawe-Taylor). Let F be a
collection of real-valued functions on a set X and let
D be a distribution over X. Let X = {x1, . . . , xn}
be a set of examples drawn i.i.d. from D with labels
yi = h∗(xi) for each i. With probability at least 1− δ,
if a classifier h(x) = sign(f(x)) with f ∈ F satisfies
yif(xi) ≥ γ > 0 for each xi ∈ X, then

errD(h) ≤ 2

n

(
k log

8en

k
log(32n) + log

8n

δ

)
,

where k = fatF (γ/16).

Now we can state and prove the following theorem
which bounds the generalization performance of the
LqLp SVM algorithm.

Theorem 4. For any distribution D and target w∗

with γq,p(D,w
∗) ≥ γq,p, if there is a constant C =

C(d, p) such that ‖X‖2,p ≤ Cnα ‖X‖p for any set X
of n examples from D then there is a polynomial time
algorithm that outputs, with probability at least 1 − δ,
a classifier h such that

errD(h) = O

(
1

n

((
CBp
γq,p

) 1
1−α

log2 n+ log
n

δ

))
.

Proof. By the definition of LqLp margin, there exists
a w (namely, w∗/ ‖w∗‖q) with ‖w‖q = 1 that achieves
margin γq,p with respect to D. This w has margin at
least γq,p with respect to any set X of n examples from
D. A vector ŵ satisfying these properties can be found
in polynomial time by solving the convex program (1)
and normalizing the solution. Notice that if the sample
is normalized to have ‖x‖p = 1 for every x ∈ X then
the LqLp margin of ŵ does not change but becomes
equal to the functional margin y(ŵ·x) appearing in the
Theorem 3. Applying Theorem 2 with ‖W‖q = 1 and

‖X‖p = 1 yields fatF (γ) ≤ (
CBp
γ )1/(1−α) and applying

Theorem 3 to ŵ gives us the desired result.

Theorem 4 tells us that if the quantity(
CBp
γq,p

) 1
1−α

(5)

is small for a certain choice of p and q then the LqLp
SVM will have good generalization. This gives us a
data-dependent bound, as (5) depends on data; specif-
ically, C and α depend on the distribution D alone,
while γq,p depends on the relationship between D and
the target w∗.

As mentioned, if p ≥ 2 then we can use C = 1
and α = 1/2 for any distribution, in which case the
bound depends solely on the margin γq,p (and to a
lesser extent on Bp). If p ≤ 2 then any set has
‖X‖2,p ≤ n1/p ‖X‖p (this follows by subadditivity of

the function z 7→ zp/2 when p ≤ 2) and we can obtain a
similar dimension-independent bound with C = 1 and
α = 1/p. Achieving dimension independence for all
distributions comes at the price of the bound becoming
uninformative as p→ 1, as (5) simplifies to (Bp/γq,p)

q

for these values. More interesting situations arise when
we consider the quantity (5) for specific distributions,
as we will show in the next section.

3.1 Examples

Here we will give some specific learning problems show-
ing when large margins can be helpful and when they
are not helpful. We focus on the p ≤ 2 case, as large
margins are always helpful when p ≥ 2.
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Example 1. Unhelpful margins. First, let D1 be
the uniform distribution over the standard basis vec-
tors in Rd and let w∗ be any weight vector in {−1, 1}d.
In this case γq,p = d−1/q, which is a large margin for
small p. If n ≤ d, then ‖X‖2,p is roughly n1/p ‖X‖p
(ignoring log factors), and (5) simplifies to Bqpd. We

could also choose to simplify (5) using C = d1/p and
α = 0, which gives us Bpd. Either way, the bound

in Theorem 4 becomes Õ(d/n) which is uninformative
since n ≤ d. If we take n ≥ d, we can still obtain a
bound of Õ(d/n), but this is the same as the worst-case
bound based on VC dimension, so the large margin has
no advantage. In fact, this example provides a lower
bound: even if an algorithm knows the distribution D1

and is allowed a 1/2 probability of failure, an error of
ε cannot be guaranteed with fewer than (1 − 2ε)d ex-
amples because any algorithm can hope for at best an
error rate of 1/2 on the examples it has not yet seen.

Example 2. Helpful margins. As another example,
divide the d coordinates into k = o(d) disjoint blocks
of equal size and let D2 be the uniform distribution
over examples that have 1’s for all coordinates within
some block and 0’s elsewhere. Taking w∗ to be a vector
in {−1, 1}d that has the same sign within each block,
we have γq,p = k−1/q. If k < n < d then ‖X‖2,p is

roughly k1/p−1/2
√
n ‖X‖p, and (5) simplifies to B2

pk.
When k = o(d) this is a significant improvement over
worst case bounds for any constant choice of p.

Example 3. An advantage for p < 2. Consider a
distribution that is a combination of the previous two
examples: with probability 1/2 it returns an example
drawn from D1 and otherwise returns an example from
D2. By including the basis vectors, we have made the
margin γq,p = d−1/q but as long as k = o(d) the bound
on ‖X‖2,p does not change significantly from Example

2, and we can still use C = k1/p−1/2 and α = 1/2.
Now (5) simplifies to B2

pk for p = 1, but becomes

B2
pk

2/p−1d2/q in general. When k =
√
d this gives

us an error bound of Õ(
√
d/n) for p = 1 but Õ(d/n)

or worse for p ≥ 2. While this upper bound does not
imply that generalization error will be worse for p ≥ 2
than it is for p = 1, we show in the next section that
for a slightly modified version of this distribution we
can obtain sample complexity lower bounds for large
margin algorithms with p ≥ 2 that are significantly
greater than the upper bound for p = 1.

4 THE CASE FOR L∞L1 MARGINS

Here we give a family of learning problems to show
the benefits of using L∞L1 margins over other mar-
gins. We do this by defining a distribution D over
unlabeled examples in Rd that can be consistently la-
beled by a variety of potential target functions w∗. We

then consider a family of large LqLp margin concept
classes Wp and bound the sample complexity of learn-
ing a concept in Wp using covering number bounds.
We show that learning W1 can be much easier than
learning Wp for p > 1; for example, with certain pa-

rameters for D having O(
√
d) examples is sufficient

for learning W1, while learning any other Wp requires
Ω(d) examples.

Specifically, let Wp = {w ∈ Rd : ‖w‖∞ = 1, γq,p(w) ≥
γq,p(w

∗)}, where w∗ maximizes the L∞L1 margin with
respect to D. We restrict our discussion to weight
vectors with unit L∞ norm because normalization does
not change the margin (nor does it affect the output of
the corresponding classifier). Let the covering number
N (ε,W,D) be the size of the smallest set V ⊆ W
such that for every w ∈ W there exists a v ∈ V with
dD(w, v) := Prx∼D[sign(w · x) 6= sign(v · x)] ≤ ε.
Define the distribution D over {0, 1}d as follows. Di-
vide the d coordinates into k disjoint blocks of size d/k
(assume d/(2k) is an odd integer). Flip a fair coin. If
heads, pick a random block and return an example
with exactly d/(2k) randomly chosen coordinates set
to 1 within the chosen block and all other coordinates
set to 0. If tails, return a standard basis vector (exactly
one coordinate set to 1) chosen uniformly at random.
The target function will be determined by any weight
vector w∗ achieving the maximum L∞L1 margin with
respect to D. As we will see, w∗ can be any vector in
{−1, 1}d with complete agreement within each block.

We first give an upper bound on the covering of W1.

Proposition 1. For any ε > 0, N (ε,W1, D) ≤ 2k.

Proof. Let Vk be the following set. Divide the d co-
ordinates into k disjoint blocks of size d/k. A vector
v ∈ {−1, 1}d is a member of Vk if and only if each
block in v is entirely +1’s or entirely −1’s. We will
show that W1 = Vk, and since |Vk| = 2k we will have
N (ε,W1, D) ≤ 2k for any ε.

Note that by Hölder’s inequality, γq,p(w) ≤ 1 for any
w ∈ Rd. For any w ∈ Vk and any example x drawn
from D, we have |w · x| = ‖x‖1, so γ∞,1(w) = 1, the
maximum margin. If w /∈ Vk then either w /∈ {−1, 1}d
or w has sign disagreement within at least one of the
k blocks. If w /∈ {−1, 1}d then γ∞,1(w) = minx |w ·
x|/ ‖x‖1 ≤ mini |w · ei| = mini |wi| < 1. If w has sign
disagreement within a block then |w · x| < ‖x‖1 for
any x with 1’s in disagreeing coordinates of w, and
this results in a margin strictly less than 1.

Now we will give lower bounds on the covering num-
bers for Wp with p > 1. In the following let H(α) =
−α log(α)−(1−α) log(1−α), the binary entropy func-
tion.
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Proposition 2. If 1 < p < ∞ then for any ε > 0,

N (ε,Wp, D) ≥ 2(1/2−H(2ε))d−k1/q(d/2)1/p−k.

Proof. First we show that |Wp| ≥ 2d/2−k
1/q(d/2)1/p−k.

Any w∗ ∈ W1 has margin γq,p(w
∗) = d−1/q, so

Wp = {w ∈ Rd : γq,p(w) ≥ d−1/q}. Note that
Wp ⊆ {−1, 1}d because if w /∈ {−1, 1}d then γq,p(w) ≤
mini |w · ei|/ ‖w‖q = mini |wi|/ ‖w‖q < d−1/q. Let

w ∈ {−1, 1}d be a weight vector such that in each
block there are at least d/k − r positive values and
at most r negative values or vice versa (there are at
most r values with whichever sign is in the minority).
Clearly w has large margin with respect to any of the
basis vectors drawn from D. For the rest of D we
have infx |w · x| = max(1, n/(2k) − 2r), so w ∈ Wp if
and only if max(1, d/(2k) − 2r) ≥ (d/(2k))1/p. For
p < ∞ and d > 2k, this happens if and only if
r ≤ 1

2 ( d2k − ( d2k )1/p). Letting r∗ =
⌊
1
2 ( d2k − ( d2k )1/p)

⌋
,

we have |Wp| = (2
∑r∗

i=0

(
d/k
i

)
)k ≥ 2d/2−k

1/q(d/2)1/p−k.

Now we can lower bound the covering number using
a volume argument by noting that if m is the cardi-
nality of the largest ε-ball around any w ∈ Wp then
N (ε,Wp, D) ≥ |Wp|/m. For any pair w,w′ ∈ Wp,
dD(w,w′) ≥ h(w,w′)/(2d) where h(w,w′) is the ham-
ming distance (number of coordinates in which w and
w′ disagree). Therefore, in order for dD(w,w′) ≤ ε
we need h(w,w′) ≤ 2εd. For any w ∈ Wp the
number of w′ such that h(w,w′) ≤ 2εd is at most∑b2εdc
i=0

(
d
i

)
≤ 2H(2ε)d. It follows that N (ε,Wp, D) ≥

|Wp|/2H(2ε)d ≥ 2d/2−H(2ε)d−k1/q(d/2)1/p−k.

Proposition 3. For any ε > 0, N (ε,W∞, D) ≥
2(1−H(2ε))d.

Proof. First we show that W∞ = {−1, 1}d. Any w∗ ∈
W1 has margin γ1,∞(w∗) = 1/d, so W∞ = {w ∈ Rd :
γ1,∞(w) ≥ 1/d}. For any w ∈ {−1, 1}d and example
x drawn from D, we have ‖w‖1 = d, ‖x‖∞ = 1, and
|w · x| ≥ 1 (since x has an odd number of coordinates
set to 1) resulting in margin γ1,∞(w) ≥ 1/d. If w /∈
{−1, 1}d then γ1,∞(w) = minx |w ·x|/ ‖w‖1 ≤ mini |w ·
ei|/ ‖w‖1 = mini |wi|/ ‖w‖1 < 1/d.

To bound the covering number, we use the same
volume argument as above. Again, the size of the
largest ε-ball around any w ∈ W∞ is at most 2H(2ε)d

(since this bound only requires that every pair w,w′ ∈
W∞ has dD(w,w′) ≥ h(w,w′)/(2d)). It follows that
N (ε,W∞, D) ≥ 2d/2H(2ε)d.

Using standard distribution-specific sample com-
plexity bounds based on covering numbers (Itai
and Benedek, 1991), we have an upper bound of
O((1/ε) ln(N (ε,W,D)/δ)) and lower bound of ln((1−
δ)N (2ε,W,D)) for learning, with probability at least

1− δ, a concept in W to within ε error. Thus, we have
the following results for the sample complexity m of
learning Wp with respect to D. If p = 1 then

m ≤ O
(

1

ε

(
k + ln

1

δ

))
,

if 1 < p <∞ then

m ≥
(

1

2
−H(4ε)

)
d− k1/q

(
d

2

)1/p

− k + ln(1− δ),

and if p =∞ then

m ≥ (1−H(4ε)) d+ ln(1− δ).

For appropriate values of k and ε relative to d, the the
sample complexity can be much smaller for the p = 1
case. For example, if k = O(d1/4) and Ω(d−1/4) ≤ ε ≤
1/40, then (assuming δ is a small constant) having
O(
√
d) examples is sufficient for learning W1 while at

least Ω(d) examples are required to learn Wp for any
p > 1.

5 EXPERIMENTS

We performed two empirical studies to support our
theoretical results. First, to give further evidence that
using L∞L1 margins can lead to faster learning than
other margins, we ran experiments on both synthetic
and real-world data sets. Using the LqLp SVM for-
mulation defined in (1) for linearly separable data and
the formulation defined in (2) for non-separable data,
both implemented using standard convex optimization
software, we ran our algorithms for a range of values
of p and a range of training set sizes n on each data
set. We report several cases in which maximizing the
L∞L1 margin results in faster learning (i.e., smaller
sample complexity) than maximizing other margins.

Figure 1 shows results on two synthetic data sets. One
is generated using the “Blocks” distribution family
from Section 4 with d = 90 and k = 9. The other uses
examples generated from a standard Gaussian distri-
bution in R100 subject to having L∞L1 margin at least
0.075 with respect to a fixed random target vector in
{−1, 1}d (in other words, Gaussian samples with mar-
gin smaller than 0.075 are rejected). In both cases, the
error decreases much faster for p < 2 than for large p.

Figure 2 shows results on three data sets from the UCI
Machine Learning Repository (Bache and Lichman,
2013). The Fertility data set consists of 100 training
examples in R10, the SPECTF Heart data set has 267
examples in R44, and we used a subset of the CNAE-9
data set with 240 examples in R857. In all three cases,
better performance was achieved by algorithms with
p < 2 than by those with p > 2.
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Figure 1: Synthetic data results for Blocks distribution (top) and Gaussian with margin (bottom). The left
column plots generalization error (averaged over 500 trials with different training sets) versus number of training
examples n while the right column plots error versus p.

The goal of our second experiment was to determine,
for real-world data, what parameter α can be used in
the bound on ‖X‖2,p in Theorem 4. Specifically, for
each data set we want to find αmin = inf{α : ‖X‖2,p ≤
nα ‖X‖p}, the smallest value of α so the bound holds
with C = 1. Recall that for p = 1, αmin can theoreti-
cally be as great as 1, while for p ≥ 2 it is at most 1/2.
We would like to see whether αmin is often small in
real data sets or whether it is close to the theoretical
upper bound.

We can estimate αmin for a given set of data by creat-
ing a sequence {Xm}nm=1 of data matrices by adding
to the matrix one point from the data set at a time.
For each point in the sequence we can compute

αm =
log(‖Xm‖2,p / ‖X‖p)

logm
,

a value of α that realizes the bound with equality for
this particular data matrix. We repeat this process
T times, each with a different random ordering of the
data, to find T sequences αim, where 1 ≤ i ≤ T and
1 ≤ m ≤ n. We can then compute α̂min = maxi,m α

i
m,

a value of α which realizes the bound for every data
matrix considered and which causes the bound to hold
with equality in at least one instance.

Figure 3 shows a histogram of the resulting estimates
on a variety of data sets and for three values of p.
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Figure 3: A histogram showing the values of α̂min on
47 data sets from the UCI repository.

Notice that in the vast majority of cases, the estimate
of αmin is less than 1/2. As expected there are more
values above 1/2 for p = 1 than for p ≥ 2, but none of
the estimates were above 0.7. This gives us evidence
that many real data sets are much more favorable for
learning with large L∞L1 margins than the worst-case
bounds may suggest.
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Figure 2: Results for Fertility data (top), SPECTF Heart data (middle), and CNAE-9 (bottom). The left column
plots error (averaged over 100 trials with different training sets and tested on all non-training examples) versus
number of training examples n while the right column plots error versus p.

6 DISCUSSION

Theorem 4 applies to the realizable case in which
the two classes are linearly separable by a positive
LqLp margin. The result can be extended to the non-
realizable case by bounding the empirical Rademacher
complexity in terms of the L2,p-norm of the data us-
ing the Khintchine inequality. This bound can be seen
as a special case of Proposition 2 of Kloft and Blan-
chard (2012) as our setting is a special case of multi-
ple kernel learning (see supplementary material for de-
tails). Kloft and Blanchard (2012) also prove bounds
on the population and local Rademacher complexities,
although in doing so they introduce an explicit depen-
dence on dimension (number of kernels).

This highlights a difference in goals between our work
and much of the MKL literature. The MKL literature
provides bounds that apply to all data distributions
while focusing on the p ≥ 2 regime, as this is the most

relevant range for MKL. On the other hand, we are
interested in understanding what kinds of data lead
to fast (and dimension-independent) learning for dif-
ferent notions of margin, and furthermore when one
type of margin can be provably better than another.
We make steps toward understanding this through our
condition on the L2,p-norm and concrete lower bounds
on the generalization error, neither of which has been
explored in the context of MKL. Carrying over these
perspectives into more general settings such as MKL
is an exciting direction for further research.
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