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1. Bounding T by log |CD,χ(ε)|
The following lemma bounds the number of connected
components in the commonality graph by the number
of compatible hypotheses. For notational definitions,
refer to Section 2 in the main body of the paper.

Lemma 1. Let G be the graph that results from re-
moving all non-indicators from Gcom(U), and sup-
pose G is divided into T connected components. If

mu ≥ 2n2

ε log n
δ , then T ≤ log2 |CD,χ(ε)| with probabil-

ity at least 1− δ.

Proof. Since G has no non-indicators, a hypothesis is
compatible with U if and only if every component is
made entirely of indicators of the same type. There are
two possible choices for each component, so the number
of fully compatible hypotheses is |CU,χ(0)| = 2T .

To complete the proof, it is sufficient to show that
CU,χ(0) ⊆ CD,χ(ε). Since any hypothesis in CU,χ(0)
is compatible with any example containing variables
from only one component, we only need to show that
there is at most ε probability mass of examples that
contain variables from multiple components. All such
examples correspond to edges that are absent from
Gcom(U), so we only need to show that Gcom(U) was
constructed with enough examples so that nearly all
significant edges appear in the graph.

To see this, fix any pair of variables xi, xj . If
Prx∼D[xi = 1 ∧ xj = 1] < ε/n2, we can ignore
this pair since all such pairs together constitute a
probability mass strictly less than ε. Now suppose
Prx∼D[xi = 1 ∧ xj = 1] ≥ ε/n2. The probabil-
ity that xi and xj do not appear together in any
of the examples in U is at most (1 − ε

n2 )mu , so if

mu ≥ n2

ε log n2

δ then this failure probability is at most
δ/n2. By a union bound over all such pairs, with
probability at least 1 − δ all corresponding edges ap-
pear in Gcom(U), and the probability mass of examples

containing variables from multiple components is at
most ε. This means that every fully compatible hy-
pothesis has unlabeled error at most ε, so we have
T = log2 |CU,χ(0)| ≤ log2 |CD,χ(ε)|.

2. Finding a Consistent Compatible
Hypothesis is NP-hard

The following theorem formalizes the computational
difficulty of finding a fully consistent and compatible
two-sided disjunction in the semi-supervised setting.

Theorem 4. Given data sets L and U , finding a hy-
pothesis h ∈ C that is both consistent with L and com-
patible with U is NP-hard.

Proof sketch. The proof is by reduction from 3-
SAT. Given a 3-SAT instance ϕ on variables
x1, . . . , xn we produce the following data sets L
and U containing examples on the 4n variables
x+1 , x

−
1 , x̄

+
1 , x̄

−
1 , . . . , x

+
n , x

−
n , x̄

+
n , x̄

−
n . The labeled set

L contains examples of the form ({x+i , x̄
+
i },+1) and

({x−i , x̄
−
i },−1) for 1 ≤ i ≤ n. In addition, for each

clause in ϕ of the form (`i ∨ `j ∨ `k) where `i, `j , `k
can each be positive or negative literals, L contains
the example ({`+i , `

+
j , `

+
k },+1). The unlabeled set U

contains examples of the form {x+i , x
−
i } and {x̄+i , x̄

−
i }

for 1 ≤ i ≤ n. The labelings that are consistent and
compatible with all the non-clause examples correspond
precisely to assignments of x1, . . . , xn, and the clauses
are compatible with a given hypothesis only if they
are satisfied in the underlying assignment. The set of
positive indicators of any hypothesis h = (h+, h−) ∈ C
that is both consistent with L and compatible with U
corresponds to a truth assignment to x1, . . . , xn that
satisfies ϕ, therefore finding such a hypothesis is NP-
hard.
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3. Random Classification Noise

Here we consider the problem of learning two-sided
disjunctions under random classification noise, where
the label of each example is flipped with probability
0 ≤ α < 1/2 independently. Our goal is to extend
our algorithms to this setting so that they still success-
fully output a low error hypothesis without significant
increase in sample complexity.

More specifically, we have a distribution DX,Y over
labeled examples (X, `(X)), and the Bayes decision
rule is a two-sided disjunction h∗ ∈ C, which we also
refer to as the target concept. We have χ(h∗, D) = 1
where D is the margin of DX,Y over X, and

Pr[`(X) = −h∗(x)|X = x] = α.

For a hypothesis h, let errD(h) denote its error over
the distribution DX,Y , i.e.

errD(h) = Pr
(x,`(x))∼DX,Y

[h(x) 6= `(x)].

Let errL(h) denote its empirical error on the noisy
labeled examples L, i.e.

errL(h) =
1

|L|
∑

(x,`(x))∈L

I[h(x) 6= `(x)].

For convenience, we define the distance between h and
h∗ to be

d(h, h∗) = Pr[h(x) 6= h∗(x)].

We aim to find a hypothesis h with error

errD(h) ≤ errD(h∗) + ε = α+ ε.

Note that it is sufficient to have d(h, h∗) ≤ ε, since by
triangle inequality

errD(h) = Pr[h(x) 6= `(x)]

≤ Pr[h(x) 6= h∗(x)] + Pr[h∗(x) 6= `(x)]

≤ d(h, h∗) + errD(h∗) = d(h, h∗) + α.

In the following two subsections, we show how to extend
the algorithms (Algorithm 2 and 3) for semi-supervised
and active learning respectively. In the last subsection,
we include the extension of Algorithm 1. Note that due
to the noise in the labeled examples, we cannot hope
to find a consistent and compatible hypothesis. The
extension of Algorithm 1 only outputs a hypothesis
that has low error. However, it achieves better sample
complexity bound than the extension of Algorithm 2.

3.1. Semi-supervised Learning

In the noise-free setting, we build a hypothesis based on
the commonality graph, and then check and update the
hypothesis until it has low error rate. The key idea in
the noisy setting is that we label variables (i.e. identify
variables as positive/negative potential indicators) by
majority labels of sufficiently many examples containing
the variables, and we use a sufficiently large set of
labeled examples each time we check the hypothesis.
A brief description is provided below, while the details
are provided in Algorithm 4 and Theorem 5.

First, we build the commonality graph and the poten-
tial indicator sets. We only label a variable if it is
present in at least Õ( 1

(1−2α)2 ) examples so that we can

use majority label of the examples to correctly decide
its type. We call such variables significant. If we draw
Õ( 1

ε0(1−2α)2 ) examples, then with high probability each

non-indicator is significant and thus labeled.

Then we build a hypothesis and draw a set of labeled
examples to check it. If the empirical error is small, we
output the hypothesis since it is guaranteed to have
small error. Otherwise, either a component without
any labeled variables in it or a non-indicator causes
large error. In the first case, we need sufficiently many
examples fall in the component so that we can use
majority voting to decide the type of the variables
in it. This requires Õ( T

ε(1−2α)2 ) examples where T

is the number of connected components in the graph
that results from removing all non-indicators from the
commonality graph. In the second case, to reveal the
non-indicator, we must be able to distinguish between
an error rate of α (the error rate caused by noise) and
α+ Θ(ε(1− 2α)/k) (the error rate caused by noise and
the non-indicator leading to large error). This requires

Õ( k2

ε2(1−2α)2 ) labeled examples for each significant vari-

able. Therefore, we draw Õ
(

1
(1−2α)2

[
k3

ε3 + T
ε

])
exam-

ples at each check, so that either a component that
previously contained no labeled variables is labeled,
or a non-indicator is revealed. After at most (k + T )
updates, we are guaranteed to have a hypothesis with
small error.

Theorem 5. For any distribution DX,Y over {0, 1}n×
{−1, 1} and target concept h∗ ∈ C in the random clas-
sification noise model such that h∗ has at most k non-
indicators, and the minimum non-indicator probability

is ε0, if mu = O(n
2

ε log n
δ ) and

ml = O

(
k + log |CD,χ(ε)|

(1− 2α)2
log2 n

δ[
1

ε0
+
k3

ε3
+

log |CD,χ(ε)|
ε

])
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Algorithm 4 Learning a Low-error Hypothesis for
Two-Sided Disjunctions under Random Classification
Noise

Input: data sets U and L, parameters ε, δ, k, ε0, T
Set G = Gcom(U), V 0

+ = V 0
− = ∅

Set L′ = sample
(

100
ε0(1−2α)2 log2 n

δ , L
)

and L = L\L′

Set size(v) = |{x ∈ L′ : x 3 v}|,∀v ∈ V
Set SIG = {v ∈ V : size(v) > 10

(1−2α)2 log n
δ }

for each v ∈ SIG do
Set l = sign(

∑
x3v `(x)) and V 0

l = V 0
l ∪ {v}

Set V+ = V 0
+, V− = V 0

− and h = hG,V+∪V−

S = sample
(

100
(1−2α)2

[
k3

ε3 + T
ε

]
log2 n

δ , L
)

, L = L \S

while L 6= ∅ and errS(h) > α+ 1−2α
2 ε do

Let R denote the set of the components in G that
have no labeled variables
Let S(R) = {x ∈ S : x falls into R},∀R ∈ R
Let S(v) = {x ∈ S : nnG,V+∪V−(x) = v},∀v ∈
V+ ∪ V−
if ∃R ∈ R such that |S(R)| ≥ 10

(1−2α)2 log n
δ then

Set l = sign(
∑
x∈S(R) `(x)) and Vl = Vl ∪R

if ∃v ∈ V 0
+∪V 0

− such that |S(v)| ≥ 10k2

ε2(1−2α)2 log n
δ

and errS(v)(h) ≥ α+ (1− 2α) ε
16k then

Set G = G \ {v}
Set S = sample

(
100

(1−2α)2

[
k3

ε3 + T
ε

]
log2 n

δ , L
)

,

Set L = L \ S and h = hG,V+∪V−
Output: the hypothesis h

then with probability at least 1− δ, Algorithm 4 outputs
a hypothesis h in polynomial time such that errD(h) ≤
α+ ε.

Proof. Generalization Error: Suppose we check the
hypothesis at most k + T times (proved later), where
T is the number of connected components in the graph
that results from removing all non-indicators from
Gcom(U). Then when

|S| ≥ 100

(1− 2α)2ε2
log

k + T

δ

w.h.p. all hypotheses h with d(h, h∗) > ε will have
empirical error on S larger than α+ 1−2α

2 ε. So when
the algorithm stops the hypothesis satisfies d(h, h∗) ≤ ε
and thus errD(h) ≤ α+ ε.

Bounding the Number of Updates: We now show
that the hypothesis is indeed updated at most (k + T )
times. We begin by proving that when

|L′| ≥ 100

ε0(1− 2α)2
log2 n

δ

w.h.p. every non-indicator is labeled and every labeled
indicator gets the correct label, so that the hypothesis is
updated correctly when its error is large. First, by Cher-
noff and union bounds, the probability that there exists
a non-indicator that appears in less than 10

(1−2α)2 log n
δ

examples is bounded by k exp{O(ε0|L′|)} ≤ O(δ). So
w.h.p. every non-indicator appears in enough examples
and thus is labeled. Second, the type of an indicator
is decided by the majority label of O( 1

(1−2α)2 log n
δ )

examples. By Hoeffding and union bounds, w.h.p. the
types of all indicators appearing in enough examples
are decided correctly.

We now prove that when the error of the hypothesis
is large, we can make progress by either labeling a
previously unlabeled component or identifying a non-
indicator, and thus it is updated at most (k+T ) times.
When

|S| > 100

(1− 2α)2ε2
log

k + T

δ
,

if errS(h) > α+ 1−2α
2 ε, then w.h.p. d(h, h∗) ≥ ε/4. For

each v ∈ V+ ∪ V−, let X(v) denote those examples
whose nearest labeled variable is v, i.e.

X(v) = {x ∈ X : nnG,V+∪V−(x) = v}.

For each R ∈ R, let X(R) denote those examples fall
into the component R, i.e.

X(R) = {x ∈ X : x falls into R}.

Note that for any indicator v ∈ V+∪V−, its type is cor-
rectly decided, so the hypothesis makes no mistake on
X(v). Since |R| ≤ T and the number of non-indicators
is bounded by k, either there is a component R′ such
that

Pr[h(x) 6= h∗(x) ∧ x ∈ X(R′)] > ε/(8T )

or there is a non-indicator v′ such that

Pr[h(x) 6= h∗(x) ∧ x ∈ X(v′)] > ε/(8k).

In the first case, w.h.p. there are more than
10

(1−2α)2 log n
δ examples in S(R′) when

|S| ≥ 100T

ε(1− 2α)2
log2 n

δ
.

These examples are sufficient to decide the type of the
indicators in the component correctly. Also, w.h.p. for
any R ∈ R with more than 10

(1−2α)2 log n
δ examples in

S(R), the type of the indicators in the component are
correctly decided. This means that we correctly label
at least one component not labeled previously. This
type of updates happen at most T times.
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In the second case, we have

Pr[h(x) 6= h∗(x)|x ∈ X(v′)] > ε/(8k)

and thus

Pr[h(x) 6= `(x)|x ∈ X(v′)] > α+ (1− 2α)ε/(8k).

When

|S| ≥ 100k3

ε3(1− 2α)2
log2 n

δ

w.h.p. in S(v′) there are more than 10k2

ε2(1−2α)2 log n
δ ex-

amples and we have

errS(v′)(h) > α+ (1− 2α)ε/(16k).

Also, for any indicator v ∈ V+ ∪ V−,

Pr[h(x) 6= `(x)|x ∈ X(v)] = α.

Then w.h.p. we have

errS(v)(h) < α+ (1− 2α)ε/(16k)

for any indicator v such that |S(v)| ≥ 10k2

ε2(1−2α)2 log n
δ .

This means that we can correctly identify a non-
indicator. This type of updates happen at most k times.
Hence, we update the hypothesis at most (k+T ) times.

Sample Complexity and Running Time: When
building the commonality graph, we need

|L′| = O

(
1

ε0(1− 2α)2
log2 n

δ

)
.

Each time we check the hypothesis, we need

|S| = O

(
1

(1− 2α)2

[
k3

ε3
+
T

ε

]
log2 n

δ

)
.

The number of labeled examples then follows from
bounding the number of checks by (k + T ) and bound-
ing T by log |CD,χ(ε)|. The algorithm runs in polyno-
mial time since building the commonality graph and
checking the hypothesis take polynomial time.

3.2. Active Learning

There are two main changes in extending our algorithm
to the noisy setting. First, instead of simply determin-
ing the type of an indicator with one example, we need
to check many examples that contain it. A majority
vote will correctly identify the type of the indicator.
Second, instead of doing binary search over nodes in
the path that connect positive and negative examples,
we need to search over edges. This is because with
noise, an indicator may appear both in negative and

positive examples similar to a non-indicator, so it is
not straightforward to identify a non-indicator merely
by the types of examples it appears in. On the other
hand, an edge that contains an indicator will have its
true label match that of the indicator, so we can reli-
ably determine the type of an edge if there are enough
examples that contain both variables, and then iden-
tify a vertex in edges of two different types to be a
non-indicator. More specifically, Subroutine 5 can be
used to decide the type of a pair of variables (when
u 6= v) or that of one variable (when u = v), which is a
building block for the extension of the active learning
algorithm to the noisy setting. A brief description of
the extension is provided below, while the details are
provided in Algorithm 6 and Theorem 6.

First, we build the commonality graph and an initial
hypothesis. Let F be the set of all examples that
contain some pair of variables appearing together in
fewer than O( 1

(1−2α)2 log n
δ ) examples. We only use the

unlabeled data U \ F to construct the commonality
graph, so that every edge corresponds to a pair of
variables whose indicator type can be decided. Then
we pick a variable in each component in the graph and
decide its type. This requires Õ( T

(1−2α)2 ) queries, where

T is the number of connected components in the graph
that results from removing all non-indicators from the
commonality graph Gcom(U \F ). A hypothesis is then
constructed which labels an input example by the type
of the nearest labeled variable.

Second, we check and update the hypothesis on a set of
examples. We randomly sample a set S of Õ( 1

(1−2α)2ε2 )

examples from U \ F , and compute errS(h). If errS(h)
is at most α+ 1−2α

2 ε, we output the hypothesis since
it has small error. Otherwise, it can be shown that
on Ω(ε) fraction of examples in S the hypothesis has
different labels from the target concept h∗. This fact
can be used to identify a non-indicator. We randomly
sample Õ( 1ε ) examples from S, and for each example x,
pick min(k + 1, |x|1) variables and decide their types,
where |x|1 is the number of variables appearing in x.
This ensures that we will eventually pick an indicator
in an example x such that h(x) 6= h∗(x). Then we find
a path connecting a positive indicator and a negative
indicator, and thus can identify a non-indicator by
binary search on the edges along the path. Therefore,
after at most k updates, we are guaranteed to have a
hypothesis with small error.

Theorem 6. For any distribution DX,Y over {0, 1}n×
{−1, 1} and target concept h∗ ∈ C in the random clas-
sification noise model such that h∗ has at most k non-
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Subroutine 5 DecideType(U , u, v)

Input: unlabeled data U , variables u and v
Set S = sample( 100

(1−2α)2 log n
δ , {x ∈ U : {u, v} ⊆ x})

Set t = sign(
∑
x∈S `(x))

Output: {(u, t), (v, t)}

Algorithm 6 Actively Learning Two-Sided Disjunc-
tions under Random Classification Noise

Input: unlabeled data U , parameters α, ε, δ, k
Set U(u, v) = |{x ∈ U : {u, v} ⊆ x}|,∀u, v ∈ V .
Set F = {x ∈ U : ∃u, v ∈ x, U(u, v) <

100
(1−2α)2 log n

δ }
Set U ′ = U \ F , G = Gcom(U ′), and L = ∅
for each connected component R of G do

Set L = L ∪DecideType(U, v, v) for any v ∈ R
Set h = hG,L and S = sample( 10

(1−2α)2ε2 log k
δ , U

′)

while errS(h) > α+ 1−2α
2 ε do

for i = 1 to 100
ε log k

δ do
Set x = sample(1, S)
for each of min(k+ 1, |x|1) variables v ∈ x do

Set L = L ∪DecideType(U, v, v)
if ∃(u, 1), (v,−1) ∈ L such that u↔G v then

Set v = BinarySearchG,L(x)
Set G = G \ {v}
for each new component R of G do

Set L = L ∪DecideType(U, v, v) for v ∈ R
Set h = hG,L
break

Set S = sample( 10
(1−2α)2ε2 log k

δ , U
′)

Output: the hypothesis h

indicators, if |U | = O
(

n2

ε(1−2α)2 log2 n
δ

)
, after at most

mq = O

(
1

(1− 2α)2

[
log |CD,χ(ε)|+ k2

ε
+
k

ε2

]
log2 n

δ

)
label queries, with probability at least 1−δ, Algorithm 6
outputs a hypothesis h in polynomial time such that
errD(h) ≤ α+ ε.

Proof. Generalization Error: Assuming the hypoth-
esis is updated at most k times (proved later), we
bound the probability that the output hypothesis h
has d(h, h∗) ≤ ε. We begin by showing that the ignored
examples F have small probability mass. When U is
sufficiently large, w.h.p. all pairs of variables that ap-
pear together with probability at least ε

8n2 will appear
in sufficiently many examples in U . Assuming this is
true, we have

Pr[x ∈ F ] ≤ ε/8.
This means when d(h, h∗) > ε,

Pr[h(x) 6= h∗(x)|x ∈ X \ F ] > 3ε/4

and

Pr[h(x) 6= `(x)|x ∈ X \ F ] > α+ (1− 2α)
3ε

4
.

Then we have

Pr

[
errS(h) ≤ α+

1− 2α

2
ε

]
≤ δ

8k
.

Union bounding over the k updates, we have that w.h.p.
the hypothesis h output has d(h, h∗) ≤ ε, which leads
to errD(h) ≤ α+ ε.

Correctness of Subroutine 5: Here we show that
w.h.p. the majority voting method always decides cor-
rectly the type of the indicators, so that we build and
update the hypothesis correctly. Fix a pair of variables
(u, v) containing at least one indicator. Let Bu,v denote
the event that (u, v) appear in at least 100

(1−2α)2 log n
δ ex-

amples in U but the algorithm fails to decide the type.
This happens when the labels of more than half of the
examples queried are flipped. We have by Hoeffding
bound

Pr[Bu,v] ≤ exp

{
−2(1− 2α)2

100

(1− 2α)2
log

n

δ

}
≤ δ

4n2

and thus Pr[∪u,vBu,v] ≤ δ
4 .

Queries per Stage: To build the hypothesis, we de-
cide the type of one variable for each connected com-
ponent of G. The number of components is bounded
by T , so here we need O( T

(1−2α)2 log n
δ ) queries.

We now show that by using sufficient many queries at
each check, we make sure that when the hypothesis
has large error a non-indicator is identified, so that the
hypothesis is updated at most k times. If d(h, h∗) ≤
ε/4, then

Pr[h(x) 6= h∗(x)|x ∈ X \ F ] ≤ ε/3

and thus

Pr[h(x) 6= `∗(x)|x ∈ X \ F ] ≤ α+ (1− 2α)
ε

3
.

Then w.h.p. when |S| = O( 1
(1−2α)2ε2 log k

δ ),

errS(h) ≤ α+
1− 2α

2
ε.

Therefore, if errS(h) > α+ 1−2α
2 ε, we have d(h, h∗) ≥

ε/4. This means on at least ε/16 fraction of the exam-
ples in S we have h(x) 6= h∗(x). By sampling 100

ε log k
δ

times from S and then picking min(k+1, |x|1) variables
in the sampled x, w.h.p. we will eventually pick such
an example, and pick at least one indicator in it, whose
type is different from the nearest indicator. Then we
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find a path connecting positive and negative indicators,
and discover a non-indicator by binary search. So we
need

O

(
1

(1− 2α)2ε2
log

k

δ
+

k

(1− 2α)2ε
log

k

δ

)
queries each time we check and update the hypothesis.

Query Complexity and Running Time: Since
when the hypothesis has large error a non-indicator is
identified, it is checked and updated at most k times.
Then the number of queries follows by bounding T by
log |CD,χ(ε)|. Notice that T is the number of connected
components in Gcom(U \F ) (instead of Gcom(U)) after
removing the non-indicators. However, when U is suf-
ficiently large, w.h.p. the probability mass of F is at
most ε/8, i.e. all significant edges appear in the graph,
so we still have T ≤ log |CD,χ(ε)|. Building, checking
and updating the hypothesis all take polynomial time,
so the algorithm runs in polynomial time.

3.3. Extension of Algorithm 1

The key idea is that we can still build the indicator
graph by majority voting, and then enumerate over
compatible hypotheses. A description is provided be-
low, while the details are provided in Algorithm 7 and
Theorem 7.

First, we draw enough examples to make sure that all
non-indicators are significant, and use majority voting
to correctly decide the types of significant variables.
This requires Õ( 1

ε0(1−2α)2 ) labeled examples. We could

construct the indicator graph as we did in the noise-
free setting. However, since we only label significant
variables (i.e. identify them as potential indicators),
possibly not enough variables are labeled. Then many
of the components in the graph that results from re-
moving all non-indicators from the commonality graph
are not connected to any labeled variables, and thus
all the hypotheses built according to minimal vertex
covers in the indicator graph do not have small errors.

To address this, we take an additional step to add more
variables to the potential indicator sets before building
the the indicator graph. More precisely, after removing
the significant variables from the commonality graph,
we know that every component must contain only indi-
cators of one type. If there are Õ( 1

(1−2α)2 ) examples in

a component, we can safely decide the type of the vari-
ables in it to be the majority label of these examples,
and add these variables to the corresponding potential
indicator sets. So we draw Õ( T

ε(1−2α)2 ) examples to

make sure only components with probability mass at
most ε/(8T ) are not labeled. Here T is the number of
connected components in the graph that results from

Algorithm 7 Semi-supervised Learning with Random
Classification Noise via Enumeration

Input: data sets U and L, parameters ε, δ, ε0, α
Set G = Gcom(U), V 0

+ = V 0
− = ∅

Set L0 = sample
(

100
ε0(1−2α)2 log2 n

δ , L
)

, L = L \ L0

for each variable v appearing in more than
10

(1−2α)2 log n
δ examples in L0 do

Let l be the majority label of these examples
Set V 0

l = V 0
l ∪ {v}

V+ = V 0
+, V− = V 0

−
for each component R in G \ (V 0

+ ∪ V 0
−) do

if ∃ ≥ 10
(1−2α)2 log n

δ examples from L in R then

Let l be the majority label of these examples
Set Vl = Vl ∪R

Set GI = Gind(G,V+, V−)
for each minimal vertex cover S of GI do

Set G′ = G \ S, V ′+ = V+ \ S, V ′− = V− \ S
Set h+ = {v ∈ G′ : ∃u ∈ V ′+, u↔G′ v}
if h = (h+, G

′ \ h+) is compatible and errL(h) ≤
α+ (1− 2α) ε2 then
break

Output: hypothesis h = (h+, G
′ \ h+)

removing all non-indicators from Gcom(U), and can be
bounded by log |CD,χ(ε)|. Now hypotheses built on the
indicator graph that are compatible with the unlabeled
data can only make mistakes on these components.

After the additional step, we build the indicator graph
and enumerate over compatible hypotheses built ac-
cording to minimal vertex covers. To ensure that the
output hypothesis has small error, we must be able
to distinguish under the noise between a hypothesis h
with d(h, h∗) > ε and one with d(h, h∗) ≤ ε/4, i.e. to
distinguish between a hypothesis h with

Pr[h(x) 6= `(x)] ≥ α+ (1− 2α)ε

and one with

Pr[h(x) 6= `(x)] ≤ α+ (1− 2α)ε/4.

So we need to bound the deviation of the empirical
error by O(ε(1− 2α)), which requires Õ( 1

(1−2α)2ε2 ) la-

beled examples. Union bounding over all compatible
hypothesis introduces an extra term O(log |CD,χ(ε)|).
Theorem 7. For any distribution DX,Y over {0, 1}n×
{−1, 1} and target concept h∗ ∈ C in the random clas-
sification noise model such that h∗ has at most k non-
indicators, and the minimum non-indicator probability

is ε0, if mu = O(n
2

ε log n
δ ) and

ml = O

(
1

(1− 2α)2

[
1

ε0
+

log |CD,χ(ε)|
ε2

]
log2 n

δ

)
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then with probability at least 1− δ, Algorithm 7 outputs
a two-sided disjunction h ∈ C such that χ(h, U) = 1,
and errD(h) ≤ α+ ε. Furthermore, the algorithm runs
in polynomial time when k = O(log n).

Proof. Reducing to the Noise-free Setting: We
show that all non-indicators are in V+ ∪ V−, and the
types of all indicators in V+ ∪ V− are decided correctly,
so that the indicator graph and the hypotheses are
built correctly as in the noise-free setting. When

|L0| ≥ 100

ε0(1− 2α)2
log2 n

δ

all non-indicators are in V 0
+ ∪ V 0

− and thus in V+ ∪ V−.
Also, for any indicator in V 0

+∪V 0
−, its type is not decided

correctly only when the labels of more than half of the
examples containing it are flipped, which happens with
probability at most δ/(8n). By union bound, we have
that with probability at least 1− δ/8, the types of all
indicators in V 0

+ ∪ V 0
− are decided correctly.

Furthermore, the types of all indicators added to
V+ ∪ V− in later steps are also correct. Since all
non-indicators are in V 0

+ ∪ V 0
−, any component R in

G \ (V 0
+ ∪V 0

−) must contain only one type of indicators.
Then with probability at least 1− δ/8, the types of all
R with O( 1

(1−2α)2 log n
δ ) labeled examples are decided

correctly.

Generalization Error: First note that when

mu ≥
10n2

ε
log

n

δ

all hypotheses compatible with U fall in CD,χ(ε) with
probability at least 1 − δ/8. Fix a hypothesis h′ ∈
CD,χ(ε) with d(h′, h∗) > ε. By Hoeffding bound, when

|L| ≥ 10

(1− 2α)2ε2
log
|CD,χ(ε)|

δ

we have

Pr

[
errL(h′) ≤ α+

1− 2α

2
ε

]
≤ δ

8|CD,χ(ε)|
.

Then by union bound, with probability at least 1− δ/8,
all h ∈ CD,χ(ε) with d(h, h∗) > ε have errL(h) > α +
1−2α

2 ε. So a hypothesis h satisfying the exit condition
satisfies d(h, h∗) ≤ ε and thus errD(h) ≤ α+ ε.

Now it suffices to show that we can always find a
suitable minimal vertex cover that leads to such a
hypothesis. Note that at least one endpoint of every
edge in GI must be a non-indicator, so there must be
a subset S̃ of non-indicators that is a minimal vertex
cover of GI . Let h̃ = (h̃+, h̃−) be the hypothesis formed

from the minimal vertex cover S̃. We show that h̃ is
compatible and errL(h̃) ≤ α+ 1−2α

2 ε.

If an example contained both positive and negative
indicators, this would imply an edge still present in
GI , which is impossible. So h̃ is compatible with U .
Next we show that errL(h̃) ≤ α+ 1−2α

2 ε. Consider the
components in G \ (V+ ∪ V−). Suppose when build-
ing the hypothesis, the variables in some components
R1, R2, ..., Rt are not correctly decided. First, there
are just a few such components. Each such component
is either connected to non-indicators in G\ S̃ that have
label of a different type, or is not connected to any
labeled variable but the variables in it are positive indi-
cators. Then such components are components in the
graph Ĝ that results from removing all non-indicators
from the commonality graph G. So t is no larger than
the number T of components in Ĝ, and we have

t ≤ T ≤ log |CD,χ(ε)|

when mu = O(n
2

ε log n
δ ). Second, each such component

has small probability mass. These components are also
components in G \ (V 0

+ ∪ V 0
−). When

|L| ≥ 10T

ε(1− α)2
log2 n

δ

all components in G \ (V 0
+ ∪ V 0

−) with probability more
than ε/(8T ) have at least 10

(1−2α)2 log n
δ labeled exam-

ples and thus are added to V+ ∪ V−. Then each of
R1, ..., Rt has probability at most ε/(8T ). This means

d(h̃, h∗) ≤ Pr[x ∈ ∪iRi] ≤ ε/8

and
Pr[h̃(x) 6= `(x)] ≤ α+ (1− 2α)ε/8.

Then w.h.p. we have

errL(h̃) ≤ α+
1− 2α

2
ε.

Therefore, we are guaranteed to find such a hypothesis
when the algorithm stops.

Sample Complexity and Running Time: To en-
sure the indicator graph is built correctly, we need

|L0| = O

(
1

ε0(1− 2α)2
log2 n

δ

)
.

To ensure the hypothesis output has small error, we
need

|L| = O

(
T

(1− 2α)2ε2
log2 n

δ

)
.

Then the sample complexity of the algorithm follows
from T ≤ |CD,χ(ε)|. The time for building the indicator
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graph is clearly polynomial. The running time for
checking the hypotheses is the same as in the noise-
free setting, so it is polynomial when k = O(log n).
Therefore, the algorithm runs in polynomial time when
k = O(log n).


